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Abstract— A large fraction of the total electric load is comprised
of end-use devices whose demand is inherently deferrable in
time. While this latent flexibility in demand can be leveraged
to absorb variability in supply from renewable generation, the
challenge lies in designing incentives to induce the desired
response in demand. In the following, we study a novel
forward market, where consumers consent to deferred service
of pre-specified loads in exchange for a reduced per-unit
price for energy. The longer a customer is willing to defer,
the larger the reduction in price. The proposed deadline-
differentiated forward contract provides a guarantee on the
aggregate quantity to be delivered by a consumer-specified
deadline. Under the earliest-deadline-first (EDF) scheduling
policy, which is shown to be optimal for the supplier, we
explicitly characterize differentiated prices yielding an efficient
competitive equilibrium between supply and demand. We also
show that such prices are incentive compatible (IC) in that
every consumer would like to reveal her true deadline type
to the supplier, provided that the other consumers are truth-
telling.

Index Terms— Incentive Compatibility, Demand Response, Re-
newable Energy, Pricing Mechanisms, Deadline Scheduling.

I. INTRODUCTION

As the electric power industry transitions to a greater reliance
on intermittent and distributed energy resources, there is
an increasing need for flexible resources that can respond
dynamically to weather impacts on wind and solar pho-
tovoltaic output. These renewable generation sources have
limited controllability and production patterns that are in-
termittent and uncertain. This variability represents one the
most important obstacles to the deep integration of renewable
generation into the electricity grid. The current approach
to renewable energy integration is to balance variability
with dispatchable generation. This works at today’s mod-
est penetration levels, but it cannot scale, because of the
projected increase in reserve generation required to balance
the attendant variability in renewable supply [5]. If these
increases are met with combustion fired generation, they will
both be counterproductive to carbon emissions reductions
and economically untenable.

As wind and solar energy penetration increases, how must
the assimilation of this variable power evolve, so as to
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minimize these integration costs, while maximizing the net
environmental benefit? Clearly, strategies which attenuate
the increase in conventional reserve requirements will be
an essential means to this end. One option is to harness
the flexibility in consumption on the demand side. As such,
significant benefits have been identified by the Federal En-
ergy Regulatory Commission (FERC) [9] in unlocking the
value in coordination of demand-side resources to address
the growing need for firm, responsive resources to provide
supply-demand balancing services (ancillary services) for the
bulk power system.

A. Conventional approach

Clearly, there is an opportunity to transform the current
operational paradigm, in which supply is tailored to follow
demand, to one in which demand is capable of reacting
to variability in supply – an approach which is generally
referred to as demand response (DR) [1]. The challenge lies
in reliably extracting the desired response from participating
demand resources on time scales aligned with traditional bulk
power balancing services.

Today, most demand response programs are largely limited to
peak shaving applications, with the two most common eco-
nomic paradigms for customer recruitment and control being:
(1) direct load control whose capability is procured through
a forward transaction (e.g. interruptible load contracts) and
(2) indirect load control executed as a spot transaction (e.g.
retail dynamic pricing). The performance of the latter is
based on a best efforts basis with no firm guarantee as to
how participating demand will adjust in response to signals
(e.g. price, system alerts) from the system operator or utility.
Moreover, the exposure of demand side resources to dynamic
prices may lead to an increase in variability of load beyond
nominal load patterns under conventional flat-rate tariffs. As
the use of responsive demand shifts from reliability based
utility run programs to market-based real-time balancing
services, the criteria for performance guarantees become
more stringent. In short, resource performance based on
best efforts does not provide the level of assurance required
to avoid the use of dispatchable generation to manage the
electric system.

In the following sections, we propose a market framework
that centers on the provisioning of deadline differentiated
energy services to end-use customers, whose quality differ-
entiation maps to flexibility in the family of feasible power
profiles capable of satisfying said service. By offering a



family of differentiated services – discounted according to
quality – the coordinating entity implicitly purchases the
right to manage in real-time the delivery of power to par-
ticipating resources. In this way, it can align it’s operational
requirements with the vast heterogeneity in end-use customer
needs.

B. A differentiated service approach

Flexibility in consumption can be interpreted as a continuum
of feasible power profiles capable of satisfying the end-use
function of a demand resource. A basic question, is how
to design a market that enables a coordinating entity the
ability to “extract this flexibility” for execution of real-time
control applications – e.g., balancing variability in renewable
supply?

One possibility resides in the construction of a market
for quality-differentiated electric power services, where the
price to a consumer for receiving a particular service is a
monotonic function of the desired quality-of-service (QoS).
Naturally, a reduction in QoS is accompanied by a reduction
in price. For example, in the concrete setting of deferrable
loads, deadline would be a natural specification of QoS.
The longer a customer is willing to delay the receipt of a
specified quantity of energy, the less that customer pays (per-
unit) for said energy. Such markets would require a shift
in how we think of electricity – not as an undifferentiated
good, but rather as a set of differentiated services from which
individual consumers can specify a QoS that best meets their
electricity needs. Moreover, as a QoS specification maps di-
rectly to a set of feasible power profiles capable of servicing
a load, the aggregator can imbed its extraction of flexibility
from the demand-side in its delivery of differentiated services
with a guaranteed QoS to participating consumers.

The general concept of service differentiation is not new [11].
Many have studied the problem of centrally coordinating
the response of a collection of loads for load-following or
regulation services – all while ensuring the satisfaction of a
pre-specified QoS to individual resources [6], [8], [10], [12],
[13], [14]. However, there has been little work in the way
of designing market mechanisms that endogenously price
the flexibility being offered by the demand side. Several
classic [7], [15] and more recent [2] papers have explored the
concept of reliability-differentiated pricing of interruptible
electric power service, where the consumer takes on the risk
of interruption in exchange for a reduction in the price for
energy. Beyond the apparent issues with moral hazard and
difficulty in auditing the delivered reliability of such services,
the primary drawback of such an approach stems from the
explicit transferal of quantity risk to the demand side, as it
requires participating consumers to plan their consumption
in the face of uncertain supply – a complex stochastic control
problem.

With the aim of alleviating the aforementioned challenges,
we analyze a novel market for deadline differentiated energy
services (initially proposed in [3]), where consumers consent

to deferred service of pre-specified loads in exchange for a
reduced per-unit price for energy. The forward market for the
deadline differentiated energy service is described as a three
step process. Time is assumed discrete with periods indexed
by k = 0, 1, 2, . . . .

Step 1 (Pricing). Prior to period k = 0, the supplier
announces a bundle of deadline-differentiated prices,

p = (p1, . . . , pK)> ∈ RK+
The menu stipulates a price pk ($/kWh) for energy guaran-
teed delivery by period k.

Step 2 (Purchasing). Each consumer then purchases a
bundle, a = (a1, . . . , aK)> ∈ RK+ (kWh), of deadline-
differentiated energy quantities, where ak denotes the quan-
tity of energy guaranteed delivery to the consumer by
the deadline k. We denote the aggregate demand bundle
(summed over all individual consumer bundles) by x =
(x1, . . . , xK)> ∈ RK+ . Here, xk denotes the aggregate
quantity requiring delivery by period k.

Step 3 (Delivery). Finally, the supplier must deliver the
requested aggregate demand bundle x subject to deadline
constraints on delivery. The supplier is assumed to have two
sources of generation from which he can service demand:

Intermittent generation. An intermittent supply modeled as
a discrete time random process s = (s0, s1, . . . , sK−1), with
known distribution. Here, sk ∈ S ⊂ R+ (kWh) denotes the
energy produced during period k. The intermittent supply is
assumed to be zero marginal cost.

Firm generation. A firm supply with a constant marginal cost
of production c0 ($/kWh).

C. Outline

Building on the basic market model proposed in [3], we
present in Sections II-III, refined mathematical models for
the demand and supply side, followed by an explicit char-
acterization of incentive compatible prices and scheduling
policy that jointly yield an efficient competitive equilibrium
between the supplier and consumers in Section IV. In Section
V, we present necessary and sufficient conditions for incen-
tive compatibility with an explicit risk-reward interpretation.
Finally, we close with brief concluding remarks and direc-
tions for future research in Section VI. All formal proofs are
omitted due to space constraints.

II. DEFERRABLE DEMAND MODEL

Consider now a utility model yielding a consumer preference
ordering on deadlines. To capture the effect of consumption
deferral on consumer utility, we assume that the utility
derived from the consumption of a quantity x ∈ R+ is non-
increasing in the delivery deadline k. Specifically, let Uk(x) :
R+ → R+ denote the utility derived from the consumption



of a quantity x by deadline k. Each member of this family
of deadline-differentiated utility functions is assumed to be
continuous, concave, monotone nondecreasing, and satisfies:

U1(x) ≥ U2(x) ≥ · · · ≥ UK(x) ≥ 0 ∀ x ∈ R+,

where Uk(0) = 0 for all k. It follows that the disutility
incurred by a consumer from deferring the consumption of a
quantity x to deadline k is given by Lk(x) = U1(x)−Uk(x).
We make the following simplifying assumptions.

Assumption 1 (Single deadline preference): We assume that
each consumer has a single deadline preference. More specif-
ically, a consumer with deadline preference k derives no
disutility from deferring the consumption of a quantity x till
deadline k and derives zero utility for consumption thereafter.
Mathematically, this amounts to a family of utility functions
satisfying:

U(x) := U1(x) = · · · = Uk(x) and U j(x) = 0

for all j > k and x ∈ R+.

Assumption 2 (Piecewise linear utility): The marginal util-
ity of consumption is assumed constant at R > 0, up to
a maximum demand of q > 0, after which it becomes zero.
More formally, this corresponds to a piecewise linear utility
function of the form U(x) = R ·min{x, q}.
Definition 2.1 (Consumer type): The type of consumer i is
a triple, θi = (ki, Ri, qi), consisting of her deadline ki,
marginal utility Ri, and maximum demand qi. Let Θ denote
the set of all consumer types, which is taken to be finite. �

Clearly, Consumer i’s utility function depends only on her
type θi, and is defined as

Uθi(x) = Ri ·min{x, qi}, (1)

where x denotes the consumer’s cumulative consumption by
deadline ki.

Assumption 3 (Non-atomic model): To study the aggregate
behavior of a large number of consumers, we employ a
non-atomic model describing a continuum of infinitesimal
consumers, indexed by i ∈ [0, 1].

Definition 2.2 (Type distribution): Let µ : Θ→ [0, 1] denote
the distribution of consumer types over the space Θ. For
every θ ∈ Θ, there is a µ(θ) fraction of consumers of type
θ. It follows that

∑
θ∈Θ µ(θ) = 1. �

Definition 2.3 (Consumer action): The action of a consumer
i is a vector ai = (ai,1, . . . , ai,K)>, where ai,k denotes the
amount of electricity that consumer i requests by deadline
k. The maximum amount of electricity any consumer can
request is Q = maxθ∈Θ{q}. Hence, each consumer’s action
space is restricted to A =

{
a ∈ RK+ :

∑
k ak ≤ Q

}
. �

In the proceeding analysis, we will be concerned with
identifying conditions on both the scheduling policy and
pricing mechanism that lead to efficient allocations, while
inducing consumers to truthfully reveal their underlying type.
A truth-telling consumer is defined as follows.

Definition 2.4 (Truth-telling): Given a deadline differenti-
ated price bundle p ∈ RK+ , a consumer of type θ = (k,R, q)
is truth-telling, if her action a satisfies

ak = q · 1{R≥pk} and aj = 0, ∀ j 6= k, (2)

where 1{·} is the indicator function. In other words, she
requests her surplus maximizing quantity q · 1{R≥pk} to be
delivered by her true deadline k. �

If all consumers are truth-telling, the aggregate demand
bundle, x, depends only on the type distribution µ and the
price bundle p. It is given by

xj(µ,p) =
∑
θ∈Θ

q · 1{k=j, R≥pj}µ(θ) (3)

for all j = 1, . . . ,K, where θ = (k,R, q).

A. Consumer surplus

We are now in a position to characterize the expected surplus
derived by a consumer requesting any feasible demand bun-
dle a′ ∈ A – not necessarily equal to her truth-telling bundle
a. Before formally characterizing an individual consumer’s
surplus in our model, we introduce some notation and
assumptions. Given a truth-telling demand bundle x, we let
ωk,i(x,a

′) be the random variable denoting the total amount
of energy delivered to consumer i by stage k given her
reported bundle a′. This random variable, which (naturally)
depends on the scheduling policy employed by the supplier,
will be formally defined in Section III-A.2 (cf. Eq. (7)).
Moreover, we have allowed the random supply ωk,i(x,a

′)
to depend explicitly on the consumer index i, as the supplier
may employ a scheduling policy that is consumer index-
dependent. The dependency of ωk,i(x,a′) on the scheduling
policy is made precise in Section III.

Assumption 4: We assume each consumer i ∈ [0, 1] has
knowledge of the distribution on ωk,i(x,a′) for all 1 ≤ k ≤
K and a′ ∈ A.

Consider a consumer i of type θ = (k,R, q) facing a
nonincreasing price bundle p. By monotonicity of prices,
said consumer has no incentive to request any quantity before
her true deadline k. In other words, a′t = 0 for all t < k.
Suppose that all consumers other than i are truth-telling. The
expected surplus derived under a bundle a′ is given by

Vθ,i(x,a
′) = E {Uθ (ωk,i(x,a

′))} −
K∑
t=1

pta
′
t, (4)

where expectation is taken over the random supply
ωk,i(x,a

′) to consumer i. We assume that the requested
quantities are always supplied by their corresponding dead-
lines and the total quantity delivered never exceeds the
consumer’s total demand.

Assumption 5: Given the supplier’s delivery commitments,
we require that∑k

t=1
a′t ≤ ωk,i(x,a

′) ≤
∑K

t=1
a′t, almost surely,



for all 1 ≤ k ≤ K and a′ ∈ A. 2

Moreover, it follows that under truthful reporting of demand
a′ = a, the surplus derived by a type θ consumer simplifies
to the deterministic quantity

Vθ,i(x,a) = Uθ(ak) − pkak,

where, ak = q ·1{R≥pk}. Given a price bundle p, a consumer
i of type θ = (k,R, q) achieves maximum surplus for any
action a∗ ∈ A satisfying:

a∗ ∈ arg max
a∈A

Vθ,i(x,a). (5)

Notice that a∗ – an explicit function of the price bundle
p – represents consumer i’s optimal demand curve under
price taking behavior. For simplicity, we’ve assumed that the
maximum surplus is always achieved.

III. SUPPLY MODEL

In the following, we consider the role of a price-taking
supplier, who aims to maximize its expected profit under
a given price bundle. As such, his objectives are two-fold:

Scheduling. Causally schedule the allocation of the inter-
mittent supply s across the deadline differentiated consumer
classes, in order to minimize the expected cost of firm supply
required to ensure demand satisfaction.

Pricing. Based on the optimal scheduling policy, determine
an optimal supply curve that specifies the demand bundle
it would like to serve at every price bundle p ∈ RK+ .
This amounts to computing a price bundle that induces a
competitive equilibrium between supply and demand (cf.
Definition 4.2).

Observe that the problem of computing an optimal supply
curve (cf. Section III-B) (under a price-taking assumption)
amounts to a solution of a two-stage stochastic program,
whose expected recourse cost is the optimal value of a
constrained stochastic control problem parameterized by the
aggregate demand bundle x.

A. Optimal scheduling

When considering the problem of scheduling, it’s important
to make a distinction between intra-class and inter-class
scheduling policies. Loosely speaking, inter-class scheduling
refers to the manner in which available supply is allocated
across the deadline differentiated consumer classes, while
intra-class scheduling refers to the manner in which available
supply is allocated across consumers within a given deadline
class. One can readily see that, given a fixed aggregate
demand bundle x, the supplier’s expected profit depends
only on the inter-class scheduling policy and is invariant
under the family of feasible intra-class scheduling policies.
However, as will be made apparent in Section V, the intra-
class scheduling policy employed will have a direct effect
on consumer purchase decisions inasmuch as it affects the
distribution on each individual’s random supply ωk,i(x,a).

1) Inter-class scheduling policies: We now characterize the
optimal inter-class scheduling policy as a solution to a con-
strained stochastic optimal control problem. First, we define
the system state at period k as the pair (zk, sk) ∈ RK+ × S ,
where the vector zk denotes the residual demand requirement
of the original aggregate demand bundle x after having been
serviced in previous periods 0, 1, · · · , k − 1.

Define as the control input the vectors uk,vk ∈ RK+ ,
which denote (element-wise in j) the amount of intermittent
and firm supply allocated to demand class j at period k,
respectively. Naturally then, the state of residual demand
evolves according to the difference relation:

zk+1 = zk − uk − vk, (6)

k = 0, . . . ,K − 1, where the process is initialized with
z0 = x for j = 1, . . . ,K. The delivery deadline constraints
manifest in a sequence of nested polytopes RK+ ⊃ Z1 ⊇
Z2 ⊇ · · · ⊇ ZK = 0 converging to the the origin, where
the set Zk characterizes the feasible state space at stage k.
More precisely, we have

Zk = {z ∈ RK+ | zj = 0, ∀ j ≤ k and zj ≤ xj , ∀ j > k}.

In other words, the feasible state space is such that each
demand class is fully serviced by its corresponding deadline.
We define as the feasible input space at stage k the set of
all inputs belonging to the set

Uk(z, s) = {(u,v) ∈ RK+ × RK+ | 1>u ≤ s
and z− u− v ∈ Zk+1},

which ensures one-step state feasibility and that the total
allocation of renewable supply does not exceed availability at
the current stage. In characterizing the feasible set of causal
scheduling policies, we restrict our attention to policies with
Markovian information structure, as opposed to allowing
the control to depend on the entire history. One can show
that this is without loss of optimality for the given problem
structure, without explicitly requiring the stochastic process s
to be Markovian. More precisely, we describe the scheduling
decision at each stage k by the functions

uk = µk(z, s) and vk = νk(z, s),

where µk : Zk × S → RK+ and νk : Zk × S → RK+ .

A feasible scheduling policy is any finite sequence of
scheduling decision functions

π = (µ0, . . . ,µK−1,ν0, . . . ,νK−1)

such that (µk,νk)(z, s) ∈ Uk(z, s) for all (z, s) ∈ Zk × S
and k = 0, . . . ,K − 1. We denote by Π(x) the set of all
feasible scheduling policies. Throughout the paper, we will
suppress the explicit dependency of the feasible policy set on
the initial demand bundle x, when it’s clear from the context.

2) Intra-class scheduling policies: Recall that an intra-class
scheduling policy determines the allocation of available
supply within each deadline-differentiated demand class,
where the supply available to each demand class is deter-



mined by the inter-class policy π ∈ Π. Formally, we let
λk,i(x,ai) ∈ RK+ denote (element-wise in j) the amount of
energy delivered (at period k) to consumer i so as to satisfy
her demand ai,j . We denote the intra-class scheduling policy
by

φ = {(λ0,i, . . . ,λK−1,i) | i ∈ [0, 1]} ,

where λk,i : X × A → RK+ for all i ∈ [0, 1] and k =
0, . . . ,K − 1. Given an inter-class scheduling policy π ∈ Π,
an intra-class scheduling policy φ is feasible if and only if
it satisfies the following constraints (i) - (iv).

(i) The intra-class scheduling policy φ should not deliver
any supply allocated to class j to consumers not
belonging to class j. That is, for each demand class
j = 1, . . . ,K, we have that λjk,i(x,ai) = 0 for every
consumer i such that ai,j = 0.

(ii) No supply can be delivered to consumers belonging to
a demand class whose deadline has passed. That is,
λjk,i(x,ai) = 0 for every i ∈ [0, 1], and every 1 ≤ j ≤
k ≤ K − 1.

(iii) The total supply allocated to demand class j at time
period k must be full utilized, i.e.∫

[0,1]

λjk,i(x,ai) ϕ(di) = µjk+νjk, ∀ 0 ≤ k < j ≤ K,

where we use the Lebesgue integral1 (with respect to
Lebesgue measure ϕ defined on [0, 1]), and µjk and
νjk denote the amount of intermittent and firm supply,
respectively, allocated to demand class j at period k
according to the inter-class policy π.

(iv) Each consumer’s individual delivery commitments
must be met. For k = 1, . . . ,K, we have∑k

t=1
ai,t ≤ ωk,i(x,ai) ≤

∑K

t=1
ai,t,

where the total energy delivered to consumer i by
deadline k is given by

ωk,i(x,ai) =

k−1∑
t=0

K∑
j=1

λjt,i(x,ai). (7)

Notice that for any feasible inter-class scheduling pol-
icy π ∈ Π, it is always possible to satisfy the above
constraint.

We denote the set of all feasible intra-class scheduling
policies by Φ(π), which are parameterized by a given inter-
class policy π ∈ Π. It is important to note that the supplier’s
profit depends only on the inter-class scheduling policy.
Namely, for any feasible inter-class policy π, all feasible
intra-class scheduling policies φ ∈ Φ(π) yield the supplier
the same expected profit. This follows from the supplier’s
indifference to supply allocation between consumers within a
given demand class. Therefore, in characterizing the optimal

1Note that we have implicitly required here that λjk,i(x,ai) is Lebesgue
integrable with respect to i, over the interval [0, 1].

scheduling policy for the supplier, we restrict our attention
to inter-class policies for the remainder of this section.

3) Supplier profit: We define the expected profit J(x,p, π)
derived by a supplier as the revenue derived from an aggre-
gate demand bundle x less the expected cost of servicing
said demand bundle under a feasible inter-class scheduling
policy π ∈ Π(x). More precisely, let

J(x,p, π) = p>x − Q(x, π), (8)

where Q denotes the expected cost of firm generation in-
curred servicing x under a feasible policy π ∈ Π.

Q(x, π) = E
K−1∑
k=0

g(vπk ), (9)

where the stage cost is defined as g(v) = c01
>v for

all v ∈ RK+ . We write the state and control process as
{zπk}, {uπk}, {vπk} to emphasize their dependence on the
policy π. We wish to characterize scheduling policies that
lead to a minimal expected cost of firm supply.

Definition 3.1: The policy π∗ ∈ Π(x) is optimal if

Q(x, π∗) = inf
π∈Π(x)

E
∑K−1

k=0
g(vπk ) (10)

subject to zπk+1 = zπk − uπk − vπk for k = 0, . . . ,K − 1.

4) Optimal scheduling policy: We now present the optimal
inter-class scheduling policy, π∗.

Theorem 3.2 (Earliest-Deadline-First): Given a demand
bundle x, the optimal scheduling policy π∗ is given by:

µj,∗k (z, s) = min

{
zj , s−

j−1∑
i=1

µi,∗k (z, s)

}
νj,∗k (z, s) =

(
zj − µj,∗k (z, s)

)
· 1{k=j−1}

for j = 1, . . . ,K, k = 0, . . . ,K − 1, and (z, s) ∈ Zk × S .

Qualitatively, the optimal scheduling policy is such that the
intermittent supply sk available at period k is allocated
to those unsatisfied demand classes with earliest-deadline-
first (EDF), while the firm supply is dispatched only as
a last resort to ensure demand satisfaction. An interesting
feature of the optimal inter-class policy derives from its
proof of optimality. Namely, EDF scheduling performs as
well as any non-causal policy in the metric of expected firm
generation cost. Thus, having prescient information regarding
the realization of the intermittent supply process s cannot not
improve the suppliers expected profit beyond that achievable
under the causal EDF scheduling.

B. Optimal Pricing

Given the EDF characterization of the optimal inter-class
scheduling policy in Theorem 3.2, we are now in a position to
characterize the supplier’s optimal supply curve, under price
taking behavior. To aid our analysis, we define a new residual



random process ξ = (ξ0, . . . , ξK) ∈ RK+1, where a positive
residual (ξk > 0) denotes the amount of intermittent supply
leftover after servicing the demand class xk, according to
the EDF inter-class scheduling policy, by its deadline k. A
negative residual (ξk ≤ 0) denotes the amount by which the
intermittent supply fell short or, equivalently, the quantity
of firm supply required to ensure satisfaction of the demand
class xk. Recursively, we have

ξk+1 = ξ+
k + sk − xk+1 (11)

for k = 0, . . . ,K − 1, where ξ0 = 0. Notice that ξk depends
on both the bundle x and intermittent supply process s.
Using this newly defined process, we arrive at the following
compact representation of the minimum expected cost of firm
generation (under EDF).

Lemma 3.3 (Expected supplier profit under EDF): The ex-
pected profit criterion (8) derived under the optimal inter-
class scheduling policy π∗ ∈ Π(x) (EDF) satisfies the
following properties for all x ∈ RK+ .

1) J(x,p, π∗) is continuous and concave in x.

2) Q(x, π∗) is continuous and convex in x.

3) Given a residual process ξ induced by a pair (x, s), we
have that Q(x, π∗) satisfies

Q(x, π∗) = −E
K∑
k=1

c0 ·min{0, ξk}.

Identifying a price bundle that induces a competitive equi-
librium between supply and demand requires, first, a char-
acterization of the supplier’s optimal supply curve. Namely,
given a price bundle p, the supplier computes

x∗ ∈ arg max
x∈RK

+

J(x,p, π∗), (12)

where x∗ denotes the supplier’s profit maximizing supply
allocation – an explicit function of the price bundle p. By
concavity of J(x,p, π∗), one can readily compute necessary
and sufficient conditions for optimality, which are made
precise in the following Theorem 3.4.

Theorem 3.4 (Optimal supply curve): An allocation, x, is
profit maximizing for a given price bundle, p, if and only if

pk = ζk(x), for all k = 1, . . . ,K, (13)

where ζk : RK+ → R+ is defined by Eq. (14).

In addition, it is straight forward to show that the optimal
supply curve yields nonincreasing prices for any allocation
x ∈ RK+ . More precisely,

c0 ≥ ζ1(x) ≥ ζ2(x) ≥ · · · ≥ ζK(x).

This property of price monotonicity is consistent with our
initial criterion for constructing this market system. Namely,
the longer a customer is willing to defer her consumption in
time, the less she is required to pay per unit of energy. In
addition, the fact that no price exceeds the marginal cost of

firm generation is reassuring, as it ensures that such a market
for deferrable electric power service will always provide
customers a discount on the firm rate.

IV. MARKET EQUILIBRIUM AND INCENTIVE
COMPATIBILITY

In this section, we show that the equilibrium price bundle in
Eq. (14) is incentive compatible. Before providing the main
result of this section, we will first introduce some definitions
and assumptions that will be useful later.

Definition 4.1 (Incentive compatibility): Given a pair of
inter-class π ∈ Π and intra-class φ ∈ Φ(π) scheduling
policies, a price bundle p is incentive compatible, if truth-
telling is every consumer’s best response, provided that other
consumers are truth-telling. Formally, a price bundle p is
incentive compatible, if for all i ∈ [0, 1] and x ∈ X ,

Vθ,i(x,a) ≥ Vθ,i(x,a′), for all a′ ∈ A, θ ∈ Θ,

where a is the truth-telling action of a type θ consumer (2)
and x is the truth-telling aggregate demand bundle (3). �

Definition 4.2 (Competitive equilibrium): Given a distribu-
tion of consumer types µ, and a random process for inter-
mittent generation, s, a quantity-price pair (x,p) constitutes
a competitive equilibrium, if there exist feasible inter-class
π ∈ Π and intra-class φ ∈ Φ(π) scheduling policies, such
that the following two conditions hold.

1) The price bundle p is incentive compatible under the
scheduling polices (φ, π), in the sense of Definition 4.1.

2) The truth-telling aggregate demand bundle x = x(µ,p)
(3) and inter-class scheduling policy π maximize the
supplier’s expected profit (8) under the price bundle p.
�

Assumption 6: We assume that for every (k,R, q) ∈ Θ, we
have R ≥ c0.

Theorem 4.3 (Competitive equlibrium): The price schedule
in Eq. (14) is incentive compatible for each consumer under
the EDF scheduling policy π∗ ∈ Π and a corresponding
feasible intra-class policy φ ∈ Φ(π∗) employed by the
supplier. It follows that such a price schedule, together
with the truth-telling demand bundle it induces, constitute
a competitive equilibrium.

We note that the result on incentive compatibility may fail
to hold, if the constraint on marginal utility required in
Assumption 6 is violated. In the case that R ≤ pk ≤ c0,
it is easy to see that a consumer i of type (k,R, q) achieves
a zero payoff if she is truth-telling; while on the other hand,
she may be able to obtain a positive expected payoff by
requesting a quantity q with a later deadline k̃ > k, if, for
example, pk̃ = 0 and the distribution on supply is such that
she can receive a positive amount of supply by deadline
k with positive probability. Moreover, as we will see in
the following example, the consumer may still benefit from
misreporting its deadline, even if pk ≤ R ≤ c0.



ζk(x) := c0

[
P(ξk ≤ 0) +

K∑
t=k+1

P(ξ1 > 0, . . . , ξt−1 > 0, ξt ≤ 0)

]
, for all k = 1, . . . ,K. (14)

Example 1: Consider a scenario where P(ξK−1 ≤ 0) = 0.5
and there exists a type θ = (K − 1, R, q) ∈ Θ such that
R = 0.6c0. Suppose that there is enough intermittent supply
at the final period K such that P(ξK > 0) = 1, which implies
an optimal price of pK = 0 for deadline K. It follows from
(14) that pK−1 = P(ξK−1 ≤ 0)c0 = 0.5c0, which yields a
truth-telling type θ consumer a payoff of 0.1c0q.

Suppose that whenever ξK−1 > 0, the surplus is
large enough to satisfy the terminal demand xK ; i.e.,
P(ωK−1,i(x,a

′) = q) = 0.5 for every i, where a′ =
(0, . . . , 0, q). By reporting a false bundle a′, the consumer
achieves a positive expected payoff of

Vθ,i(x,a
′)

= RP(ξK−1 > 0)E{ωK−1,i(x,a
′) | ξK−1 > 0} − 0

= 0.5qR = 0.3c0q,

which exceeds the payoff obtained from truth-telling. �

Finally, we note that the result in Theorem 4.3 fails to hold
for general concave utility functions. This is intuitive because
a consumer with a highly concave utility function may prefer
to report a false deadline k̃ that is later than her true deadline
k, if she can obtain a fraction of her demand before stage
k (but most of her utility) with high probability, at a much
lower price pk̃.

V. INCENTIVE COMPATIBILITY CONDITIONS

In this section, we refine the conditions on incentive compati-
bility for a special case in which the consumer’s action space
is restricted to be A = {1, . . . ,K} × [0, Q]. In other words,
a consumer can only purchase a single energy quantity,
a ∈ [0, Q], and an associated deadline k̃ ∈ {1, . . . ,K}
– as opposed to an entire consumption bundle. Consider
consumer i of type θ = (k,R, q). With a slight abuse of
notation, we let ωk,i(x, k̃, a) denote the energy delivered
to consumer i by deadline k after having requested (k̃, a).
Clearly, the distribution on ωk,i(x, k̃, a) will depend on
the intra-class scheduling policy employed by the supplier,
which determines the allocation of electricity supply between
consumers belonging to the same deadline class.

In the proceeding analysis, we consider intra-class schedul-
ing policies of the following form. Namely, the maximum
supply available to consumer i does not depend on her
reported demand a. Under such a scheduling policy, we can
characterize the energy delivered to consumer i reporting
(k̃, a) as

ωk,i(x, k̃, a) = min{a, ρk,i(x, k̃)}, (15)

where the random variable ρk,i(x, k̃) represents the maxi-

mum supply available to consumer i (who takes an action
(x, k̃)) by deadline k. As an example, consider an intra-
class policy that allocates the supply available to a particular
demand class amongst consumers on a first-come first-serve
basis - i.e. those consumers arriving earlier within a given
class are given priority in terms of service.

Remark 1: We note that the following conditions for incen-
tive compatibility do not depend explicitly on the particular
form of inter-class scheduling policy (e.g, EDF) employed
by the supplier.

Let Fk,i,k̃,x(·) denote the cumulative distribution function
of the random variable ρk,i(x, k̃). Its corresponding quantile
function is defined by

F−1

k,i,k̃,x
(y) = inf

{
x : Fk,i,k̃,x(x) ≥ y

}
.

Assumption 7: We assume that for every (k, i, k̃,x),
Fk,i,k̃,x(·) is strictly increasing over [0, Ck,i,k̃,x], where
Ck,i,k̃,x is the minimum positive constant such that
Fk,i,k̃,x(Ck,i,k̃,x) = 1.

In Proposition 5.1, we derive a necessary and sufficient
condition for incentive compatibility under an intra-class
scheduling policy of the form (15). Before proceeding,
we first introduce some notation that will be useful later.
The conditional value-at-risk (CVaR) deviation measure
Dc(ρk,i(x, k̃)) (cf. [4]) of a random variable ρk,i(x, k̃) is
defined as

Dc(ρk,i(x, k̃))

= E
{
ρk,i(x, k̃)

}
− E

{
ρk,i(x, k̃)

∣∣ ρk,i(x, k̃) ≤ Fk,i,k̃,x(c)
}

= E
{
ρk,i(x, k̃)

}
− 1

c

∫ F−1

k,i,k̃,x
(c)

0

ρdFk,i,k̃,x(ρ).

In words, CVaR deviation measures the distance between the
unconditional mean and mean in the c ∈ (0, 1] probability
tail of the distribution.

Proposition 5.1: Suppose that the price bundle, p, is non-
increasing and satisfies R ≥ p1. For intra-class scheduling
policies of the form (15), the price bundle, p, is incentive
compatible for consumer i of type θ = (k,R, q), if and only
if

Dc(ρk,i(x, k̃)) ≥ E
{
ρk,i(x, k̃)

}
+ q

(
pk − pk̃
cR

− 1

)
,

(16)
for all x ∈ X and k̃ = k + 1, . . . ,K, where

c := min

{
Fk,i,k̃,x(q),

R− pk̃
R

}
.



The IC condition in (16) has an appealing interpretation
in terms of an explicit risk-reward trade-off. Namely, a
consumer of type θ = (k,R, q) is disincented from reporting
a false deadline k̃, if the risk incurred by reporting a false
deadline k̃ exceeds the expected supply by period k plus a
scalar, αk,k̃, which is proportional to the associated reduction
in expenditure for k̃ = k + 1, . . . ,K,

αk,k̃ := q

(
pk − pk̃
cR

− 1

)
.

We observe that the scalar αk,k̃ is increasing in pk − pk̃,
which implies that a consumer tends not to report a false
deadline k̃, if the price difference between periods k (her
true deadline) and k̃ is small.

Example 2 (Uniform Distribution): Suppose that the ran-
dom variable ρk,i(x, k̃) is uniformly distributed over a subset
of [0, 1]. A straightforward calculation reveals that

Dc(ρk,i(x, k̃)) = σ
√

3(1− c),

where σ denotes the standard deviation of ρk,i(x, k̃). The
incentive compatibility condition in (16) therefore simplifies
to

σ
√

3(1−c) ≥ E
{
ρk,i(x, k̃)

}
+ q

(
pk − pk̃
cR

− 1

)
, (17)

which yields an explicit mean-variance trade-off interpre-
tation of incentive compatibility. We finally note that, for
a special case with c = (R − pk̃)/R (cf. definition of c
following Eq. (16)), the condition in (17) can be further
simplified to

σ
√

3
pk̃
R
≥ E

{
ρk,i(x, k̃)

}
− q

(
R− pk
R− pk̃

)
.

Essentially, a consumer will be disincented from reporting a
false deadline if the standard deviation of supply exceeds the
mean, less a constant measuring the reduction in expenditure.

VI. CONCLUSION

To explore the feasibility of deferrable electricity loads, we
propose a novel market for deadline-differentiated energy
services that provides a guarantee on the aggregate quantity
of energy to be delivered by a consumer-specified deadline.
For the earliest-deadline-first (EDF) scheduling policy, which
is shown to be optimal for the supplier, we provide a char-
acterization of the deadline-differentiated prices yielding a
competitive equilibrium between the supplier and consumers.

Somewhat surprisingly, we show that the supplier’s optimal
price bundle is incentive compatible, in that every consumer
would like to reveal her true deadline to the supplier, pro-
vided that the other consumers are truth-telling. This result
implies the efficiency of a competitive equilibrium. We also
provide incentive compatibility conditions for a special class
of intra-class scheduling policies.

The market we have considered in our analysis is single shot.
As a natural extension, it would be of interest to explore the

dynamic analog of our formulation in which the market is
cleared on a recurrent basis. In addition, such a dynamic
setting could provide the foundation on which to explore
efficient price discovery schemes.
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