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Abstract—We prove that non-convex quadratically constrained
quadratic programs can be solved in polynomial time when their
underlying graph is acyclic, provided the constraints satisfy a
certain technical condition. When this condition is not satisfied,
we propose a heuristic to obtain a feasible point. We demonstrate
this approach on optimal power flow problems over radial
networks.

Index Terms—Quadratic programs, conic relaxations, optimal
power flow, distribution networks.

I. INTRODUCTION

A quadratically constrained quadratic program (QCQP) is
an optimization problem in which the objective function and
the constraints are quadratic. Many engineering problems can
be represented as QCQPs, e.g., MIMO antenna beam-forming
[1]–[4], sensor network localization [5], principal component
analysis [6] and optimal power flow [7]–[9]. A wide-range
of combinatorial problems can also be cast as QCQPs, e.g.,
the max-cut problem [10], [11] and the maximum stable set
problem [12], [13]. In general, QCQPs are non-convex, and
therefore lack computationally efficient solution methods. The
contribution of this paper is to expand the class of non-
convex QCQPs for which globally optimal solutions can be
guaranteed.

The standard approach in the literature to solving a QCQP,
optimally or approximately, is to relax this non-convex
problem to a convex conic program [14], [15]. There are
polynomial-time interior-point algorithms to solve these re-
laxed programs cast as second-order cone programs (SOCP)
or semidefinite programs (SDP) [16]–[18]. For applications of
this technique to engineering problems, we refer the reader to
[14], [19]. Several authors have investigated the accuracy of
these relaxations [10], [20]–[23]. Others have studied condi-
tions under which a conic relaxation of the QCQP is exact,
i.e., an optimal solution of the QCQP can be computed from
an optimal solution of its relaxation [24], [25]. In Section
II, we extend such results by proving a sufficient condition
under which QCQPs with complex variables whose underlying
graph structures are acyclic admit an efficient polynomial time
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solution through an SOCP or SDP relaxation. A special case of
the main result was reported in [26] using the Lagrangian dual
approach [14], [15]. Also, a similar result has been recently
proved in [27] using an alternate method.

We apply the theory developed here to the optimal power
flow (OPF) problem on radial networks in Section III. Orig-
inally formulated by Carpentier in 1962 [28], OPF seeks to
minimize some cost function, such as power loss, generation
cost and/or user utilities, subject to engineering constraints on
a power network. As shown in [7]–[9], [29], [30], OPF can be
formulated as a QCQP. We characterize a class of OPF prob-
lems over radial networks that have exact conic relaxations;
the sufficient conditions in [31], [32], [33, Theorem 2], [34,
Theorem 7] are special cases of this set.

When a QCQP does not satisfy the sufficient conditions for
an exact relaxation, the convex relaxed problem may fail to de-
liver an optimal solution for the original non-convex problem.
For such cases, we provide a heuristic approach in Section
IV to obtain a feasible solution starting from the solution
obtained from the relaxed problem. Through simulations, we
demonstrate that this technique converges to a near-optimal
feasible solution for OPF. We present a conclusion in Section
V.

II. QCQP AND RELAXATIONS

Consider the following QCQP with complex variable x ∈
Cn, where C is the set of complex numbers.
Primal problem P :

minimize
x∈Cn

xHC0x

subject to: xHCpx ≤ bk, p = 1, . . . ,m,

where xH denotes the conjugate transpose of x, C0, . . . , Cm
are n × n complex Hermitian matrices and b1, . . . bm are
scalars. If the matrices C0, . . . , Cm are positive semidefinite,
then problem P is a convex program and can be solved in
polynomial time [15], [35]. Otherwise, problem P is non-
convex and NP-hard in general.

We next define

C := {C0, C1, . . . , Cm}
and explore conditions on C that allow P to be solved in
polynomial time. We start with some notation. Let i =

√
−1.

For any matrix H , let Hjk denote the entry in matrix H at
the j-th row and k-th column. For any complex number z,
let Re z and Im z denote the real and imaginary parts of z,
respectively. Now consider the following problem with n× n
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Hermitian matrix W .
Relaxed Problem RP :

minimize
W=WH

tr(C0W )

subject to: tr (CpW ) ≤ bp, p = 1, . . . ,m, (1)
W ∈ W, (2)

where the set of Hermitian matrices W satisfies the following
property:

For all x ∈ Cn, xxH ∈ W. (3)

In other words, W contains all n × n positive semidefinite
matrices of rank 1. RP is a relaxation of P because for any
feasible solution x of problem P , W = xxH ∈ W is a feasible
solution with the same objective function value of RP because
xHCpx = tr(CpxxH) = tr(CpW ) for all p = 0, 1, . . . ,m. If
there is an algorithm to solve RP in polynomial time and
an optimal solution of P can be recovered from an optimal
solution of RP in polynomial time, then P can be solved in
polynomial time. RP is said to be an exact relaxation of P if
an optimal solution for P can be computed from an optimal
solution of RP . In what follows, we characterize the sets of
matrices C and W such that the relaxation of P is exact and
the optimal solution of P can be computed from the optimal
solution of RP in polynomial time.

Suppose, there exists a function f defined on n × n
Hermitian matrices that takes values in Cn and satisfies

for all W ∈ W, C ∈ C,
tr(CW ) ≥ xHCx, where x = f(W ). (4)

Then an optimal solution of P can be obtained by applying f
to an optimal solution of RP . We derive conditions on C and
W for such a function f to exist; we also derive a polynomial
time function f in the process.

Define the n×1 vector of angles χ such that for 1 ≤ k ≤ n,

xk := |xk|eiχk ,

where |z| denotes the absolute value of a complex number z.
All angles lie in the interval [0, 2π) and all angle operations
are taken modulo 2π. To define the function f , we need to
define |xk| and χk for 1 ≤ k ≤ n. For C ∈ C and W ∈ W ,
we have tr(CW ) =

∑
j,k CjkWjk. Then tr(CW ) ≥ xHCx

if and only if:∑
j 6=k

Cjk(xHj xk −Wjk) +
∑
k

Ckk(|xk|2 −Wkk) ≤ 0. (5)

We ensure that the second sum in (5) is zero by requiring for
all 1 ≤ k ≤ n, Wkk ≥ 0 and defining

|xk| :=
√
Wkk. (6)

To define f , it remains to determine the angles χ such that
x = f(W ) satisfies (4). Equivalently, we find χ such that the
first sum in (5) is nonpositive. Define an n×n matrix of angles
λ that satisfies λkj = −λjk and rewrite the first sum in (5) as

follows.∑
j 6=k

Cjk(xHj xk −Wjk) =
∑
j 6=k

Cjk(xHj xk − |xj ||xk|eiλjk)︸ ︷︷ ︸
:=T1

+
∑
j 6=k

Cjk(|xj ||xk|eiλjk −Wjk).︸ ︷︷ ︸
:=T2

(7)

Now, we derive conditions on C and W such that there exists
a matrix λ for which the terms T1 and T2 in (7) are 0 and
nonpositive, respectively. First we identify conditions on λ
such that T1 = 0.

Let GC be the undirected graph on n vertices, such that there
is an edge (j, k) between the nodes j and k, j 6= k if and only
if Cjk 6= 0 for some C ∈ C. Note that GC does not contain
any self-loops. In graph GC , define the length of a path from
j to k, denoted by (j = k0, k1), (k1, k2), . . . (kr−1, kr = k)
w.r.t. λ as:

r−1∑
`=0

λk`k`+1 .

Similarly, define the length of a cycle w.r.t. λ.

Lemma 1. If all non-empty cycles in graph GC have zero
length w.r.t. λ, then there exists χ such that for all edges (j, k)
in GC ,

χk − χj = λjk. (8)

Proof: For each connected component of graph GC , pick
any vertex j in the graph, and set χj to 0. For any other vertex
k in the same connected component, consider any path from
node j to node k and set χk to the length of that path. Since
all cycles have zero length, all paths from j to k have the
same length. The χ computed in this way satisfies (8), which
completes the proof of Lemma 1.

Lemma 2. If GC is acyclic, then there exists χ such that for
all edges (j, k) in GC ,

χk − χj = λjk.

Proof: The construction in the proof of Lemma 1 works
for acyclic graphs GC .

Lemmas 1 and 2 provide sufficient conditions under which
there exists χ that satisfies the relation in (8), given λ. If
GC contains non-empty cycles and there is a cycle that does
not have zero length w.r.t. λ, then it may not be possible to
construct χ that satisfies (8). Henceforth, restrict attention to
the case where GC is acyclic.

Given the matrix λ and the vector χ defined through Lemma
2, we have

T1 =
∑
j 6=k

Cjk
(
xHj xk − |xj ||xk|eiλjk

)
=

∑
(j,k)∈GC

Cjk

(
|xj ||xk|ei(χk−χj) − |xj ||xk|eiλjk

)
= 0.

The proof in Lemma 2 (and Lemma 1) is constructive. Thus
it remains to further characterize the sets C and W so that a
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matrix of angles λ exists for which T2 ≤ 0. We achieve this
in Lemma 3.

Define the n×n matrices of angles ω and γ(C), where for
1 ≤ j, k ≤ n,

Wjk = |Wjk|eiωjk , Cjk = |Cjk|eiγjk(C) (9)

Using |xk| =
√
Wkk in the expression of T2 in (7), we have

T2 =
∑
j 6=k

Cjk
(
|xj ||xk|eiλjk −Wjk

)
=
∑
j 6=k

Cjk

(√
WjjWkke

iλjk − |Wjk|eiωjk

)
.

Lemma 3. For any 1 ≤ j, k ≤ n, j 6= k. If W ∈ W satisfies√
WjjWkk ≥ |Wjk|, (10)

and the set C satisfies

max
C∈C

γjk(C)−min
C∈C

γjk(C) ≤ π, (11)

then there exists an angle λjk such that

Re
[
Cjk

(√
WjjWkke

iλjk − |Wjk|eiωjk

)]
≤ 0. (12)

Proof: If Cjk = 0, the relation in (12) is trivially satisfied
for arbitrary λjk. Assume Cjk 6= 0 henceforth. Define

ajk :=
(√

WjjWkke
iλjk − |Wjk|eiωjk

)
, (13)

and let αjk be the angle of ajk, i.e., ajk = |ajk|eiαjk . Using
(13), the left-hand side of the relation in (12) becomes

Re[Cjk ajk] = |Cjk||ajk| cos(γjk(C) + αjk).

The right-hand side of the above equation is nonpositive if for
all C ∈ C,

cos(γjk(C) + αjk) ≤ 0. (14)

Since cos(·) is nonpositive in [π/2, 3π/2], the inequality in
(14) holds if

π

2
−min
C∈C

γjk(C) ≤ αjk ≤
3π
2
−max

C∈C
γjk(C). (15)

Such an αjk exists provided 3π
2 − maxC∈C γjk(C) ≥ π

2 −
minC∈C γjk(C), which is equivalent to the condition in (11).
Now, pick any αjk that satisfies (15). For this choice of αjk,
we are only left with computing the corresponding λjk.

From (13), it follows that Im[ajke−iαjk ] = 0. Thus, we have

sin(λjk − αjk) =
|Wjk|√
WjjWkk

sin(ωjk − αjk). (16)

The above equation always has a solution for λjk if the term
on the right-hand side of (16) lies in the interval [−1,+1],
which is guaranteed if W ∈ W satisfies (10). This completes
the proof of Lemma 3.

Here, we interpret the conditions required forW and C. The
relation in (10) is equivalent to:

Wkk ≥ 0 and WjjWkk ≥ |Wjk|2,
for each 1 ≤ j, k ≤ n, j 6= k. This condition is satisfied if
W is the set of all n × n Hermitian matrices with positive

semidefinite 2× 2 principal minors, which is also satisfied if
the setW is the set of all n×n positive semidefinite matrices.
These sets are convex and the relaxation RP can be solved as
a conic program [14], [15], [24].

To interpret the relation in (11), consider the complex
numbers Cjk for the matrices C ∈ C. The corresponding
angles γjk(C), C ∈ C, satisfy (11), if there exists a line
through the origin such that all the complex numbers Cjk,
C ∈ C, lie on one side of this line; see Figure 1 for examples.

Note that the proof is constructive and hence the angle λjk
can be computed for all 1 ≤ j, k ≤ n, j 6= k. Also, if λjk
satisfies (12), then λkj = −λjk is such that

Re
[
Ckj

(√
WkkWjje

iλkj − |Wkj |eiωkj

)]
≤ 0,

and Lemma 3 provides the construction of a matrix of angles
λ that satisfies the condition in Lemma 2. This completes the
characterization of the sets C and W and the construction of
f for which (4) holds.

To recapitulate, we delineate the construction of f . For each
edge (j, k) in GC , pick αjk that satisfies (15). For this αjk,
compute λjk from (16). Set λkj = −λjk. Note that we only
construct λjk corresponding to the edges (j, k) in GC . This
is enough to define the angles χ using Lemma 2. Using this
construction, define x = f(W ) where xk =

√
Wkk e

iχk . Thus
we have proved the following result.

Theorem 4. Suppose C and W satisfy the following:
1) GC is acyclic,
2) For each edge (j, k) in GC ,

max
C∈C

γjk(C)−min
C∈C

γjk(C) ≤ π,√
WjjWkk ≥ |Wjk|.

Then for all W ∈ W and C ∈ C,

tr(CW ) ≥ [f(W )]H C [f(W )].

RP can be solved over the set of n×n Hermitian matrices
such that 2 × 2 principal minor corresponding to every edge
(j, k) in the acyclic graph GC is positive semidefinite. This
constraint is a second-order cone constraint [15] and hence
can be solved as an SOCP that is polynomial time computable
[16]–[18]. RP can also be solved overW being the set of n×n
positive semidefinite matrices and this is an SDP [14], [15].
From Theorem 4, it follows that for any optimal solution W∗ of
the SOCP or SDP relaxation of P , x∗ = f(W∗) is an optimal
solution of P and hence the SOCP or SDP relaxation of P is
exact. This result has been independently proved recently in
[27].

A. QCQP in the real domain

Suppose in the QCQP P , the matrices in set C are real and
symmetric, then (11) is always satisfied. If in addition, the
graph GC is acyclic, then Theorem 4 implies that the SDP or
the SOCP relaxation RP is exact and thus we can obtain an
optimal solution x∗ ∈ Cn of P in polynomial time.

Let R denote the set of real numbers. Many authors [24],
[25] have considered the case where P is solved over x ∈ Rn
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Fig. 1: (a) and (b) are examples of sets of complex numbers whose angles satisfy (11). (c) is an example of a set whose angles
that do not.

and RP is solved over a real symmetric matrix W ∈ Rn×n.
Here, we provide a sketch of how this result follows from the
relation in (7).

For such a real QCQP, the angles γjk(C), ωjk, λjk, αjk for
edge (j, k) in the graph GC , C ∈ C and χk for 1 ≤ k ≤ n
are restricted to be in the set {0, π}. Consider the additional
constraint that for each (j, k) in GC , γjk(C) for all C ∈ C
is either 0 or π, i.e., the real numbers [Cp]jk for all p =
0, 1, . . . ,m have the same sign. Choose λjk as follows:

λjk :=

{
π, if [Cp]jk ≥ 0 for p = 0, 1, . . . ,m,
0, if otherwise for p = 0, 1, . . . ,m.

From (12), these angles satisfy T2 ≤ 0. Thus, we are only left
to prove that there exists an n×1 vector of angles χ ∈ {0, π}n
such that χk−χj = λjk and hence T1 = 0. It can be checked
that this is equivalent to the uniformly almost off-diagonal
nonpositive condition in [25], i.e., there exists σ ∈ {−1, 1}n
such that for each edge (j, k) ∈ GC , we have [Cp]jkσjσk ≤ 0
for p = 0, . . . ,m. This essentially proves the result in [25,
Theorem 3.4].

Note that in the sketch provided, GC may contain cycles.
Corresponding to each edge (j, k) ∈ GC , there is a sign (+ or
−) of the entries [Cp]jk, p = 0, 1, . . . ,m. The result requires
the sign pattern of the graph to satisfy the uniformly almost
off-diagonal nonpositive condition.

Now restrict attention to QCQPs where GC is acyclic. Then
[25, Theorem 3.4] and Theorem 4 both imply that the QCQP
in the real domain can be solved in polynomial time using
SDP or SOCP relaxations. Theorem 4, however, generalizes
the result in [25] to complex QCQPs and cannot be obtained by
transforming a QCQP in the complex domain to an equivalent
QCQP in the real domain using the following transformation
[14], [15] of the quadratic forms.

xHCx =
(

Rex
Imx

)T (ReC − ImC
ImC ReC

)(
Rex
Imx

)
,

where for any vector or matrix y, yT denotes its transpose.
This discussion is summarized in the following.

Corollary 5. Suppose C ∈ Rn×n for all C ∈ C and GC is
acyclic.

1) Then an optimal solution x∗ ∈ Cn of P can be obtained
in polynomial time.

2) If for each edge (j, k) in GC , the real numbers Cjk, C ∈ C
have the same sign, then an optimal solution x∗ ∈ Rn of
P can be obtained in polynomial time.

Remark 1. The authors in [24], [25] consider an additional
convex constraint in P of the form

x2 ∈ F ,
where x2 is the n× 1 vector with (xi)2 as its ith component.
This adds the constraint

diag(W ) ∈ F ,
in the relaxation RP . Our proofs remain unchanged with this
additional constraint on the diagonal elements of W .

III. OPTIMAL POWER FLOW: AN APPLICATION

In this section, we apply the results of Section II to the
optimal power flow (OPF) problem. We start by summarizing
some of the recent results on OPF relaxations in Section III-A.
In Section III-B we formulate OPF as a QCQP. In Section III-C
we restrict our attention to OPF over radial networks and use
Theorem 4 to provide a sufficient condition under which OPF
can be solved efficiently. Radial networks are important as
most distribution systems are radial.

A. Prior work

As previously discussed, OPF can be cast as a QCQP.
Various nonlinear programming techniques have been applied
to the resulting non-convex problem, e.g., in [29], [30], [36].
An SDP based relaxation for OPF is proposed in [7], [8] and its
use is illustrated on several IEEE test systems in [37] using an
interior-point method. The authors in [9], [38] propose to solve
the convex Lagrangian dual of the OPF problem and derive a
sufficient condition that must be satisfied by the dual optimal
solution for an optimal solution of OPF to be recovered from it.
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Though an SDP relaxation recovers an OPF solution for most
IEEE test systems, it does not work on all problem instances;
such limitations have been most recently discussed in [39],
though the non-convexity of power flow solutions has been
studied earlier, e.g., in [40]–[43].

Recently a series of works have studied OPF over radial
networks and proved a variety of sufficient conditions that
guarantee exact convex relaxations. It has been independently
reported in [31], [32], [43] that the semidefinite relaxation of
OPF is exact for radial networks provided certain conditions on
the power flow constraints are satisfied. A different approach
to OPF has been explored using the branch flow model,
first introduced in [44], [45]. While [46] studies a linear
approximation of this model, various relaxations based on
second-order cone programming (SOCP) have been studied
in [47]–[50]. Authors in [48]–[50] prove that this relaxation is
exact for radial networks when there are no upper bounds
on loads, or when there are no upper bounds on voltage
magnitudes.

Motivated by the results in [48], a more general branch flow
model is introduced in [51] for the power flow analysis and
optimization for both radial and meshed networks. The precise
relationships between the SOCP based relaxations and the SDP
based relaxations for OPF has been recently identified in [52].

B. Problem Formulation

Consider a power system network with n nodes (buses). The
admittance-to-ground at bus i is yii and the admittance of the
line between connected nodes i and j (denoted by i ∼ j) is
yij = gij − ibij . Typically, gij ≥ 0 and bij ≥ 0, i.e., the lines
are resistive and inductive. Define the corresponding n × n
admittance matrix Y as

Yij =


yii +

∑
j∼i

yij , if i = j,

−yij , if i 6= j and i ∼ j,
0 otherwise.

(17)

Remark 2. Y is symmetric but not necessarily Hermitian.

The remaining circuit parameters and their relations are
defined as follows.
• V and I are n-dimensional complex voltage and current

injection vectors, where Vk, Ik denote the nodal voltage
and the injection current at bus 1 ≤ k ≤ n respectively.
The voltage magnitude |Vk| is bounded as

0 < W k ≤ |Vk|2 ≤W k.

• Sk = Pk + iQk is the complex power injection at node
1 ≤ k ≤ n, where Pk and Qk, respectively, denote the
real and reactive power injections and

Sk = VkI
H
k . (18)

• PDk and QDk are the real and reactive power demands at
bus 1 ≤ k ≤ n, which are assumed to be fixed and given.

• PGk and QGk are the real and reactive power generation at
bus 1 ≤ k ≤ n. They are decision variables that satisfy
the constraints PGk ≤ PGk ≤ P

G

k and QG
k
≤ QGk ≤ Q

G

k .

Power balance at each bus 1 ≤ k ≤ n requires PGk = PDk +Pk
and QGk = QDk +Qk, which leads us to define

P k := PGk − PDk , P k := P
G

k − PDk
Q
k

:= QG
k
−QDk , Qk := Q

G

k −QDk .

The power injections at each bus 1 ≤ k ≤ n are then bounded
as

P k ≤ Pk ≤ P k, Q
k
≤ Qk ≤ Qk.

The branch power flows and their limits are defined as follows.
• Sij = Pij + iQij is the sending-end complex power flow

from node i to node j, where Pij and Qij are the real and
reactive power flows respectively. The real power flows
are constrained as |Pij | ≤ F ij where F ij is the line-flow
limit between nodes i and j and F ij = F ji.

• Lij = Pij + Pji is the power loss over the line between
nodes i and j, satisfying Lij ≤ Lij where Lij is the
thermal line limit and Lij = Lji. Also, observe that since
Lij ≥ 0, we have |Pij | ≤ F ij , |Pji| ≤ F ji if and only if
Pij ≤ F ij , Pji ≤ F ji.

For 1 ≤ k ≤ n, let Jk = eke
H
k where ek is the k-

th canonical basis vector in Cn. Define Yk := eke
H
k Y .

Substituting these expressions into (18) yields

Sk = eHk V I
Hek = tr

(
V V H(Y HekeHk )

)
= V HY Hk V

=

V H
(
Y Hk + Yk

2

)
︸ ︷︷ ︸

=:Φk

V



+i

V H
(
Y Hk − Yk

2i

)
︸ ︷︷ ︸

=:Ψk

V

 , (19)

where Φk and Ψk are Hermitian matrices. Thus, the two
quantities V HΦkV and V HΨkV are real numbers and

Pk = V HΦkV, Qk = V HΨkV.

The real power flow from i to j can be expressed as a quadratic
form as follows.

Pij = Re{Vi(Vi − Vj)HyHij } = V HM ijV, (20)

where M ij is an n × n Hermitian matrix. Further details of
these matrices are provided in the appendix.

The thermal loss of the line connecting buses i and j is

Lij = Lji = Pij + Pji = V HT ijV (21)

where T ij = T ji := M ij +M ji � 0.
For a Hermitian n× n matrix C0, we have

Optimal power flow problem OPF :

minimize
V ∈Cn

V HC0V

subject to:
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P k ≤ V HΦkV ≤ P k, 1 ≤ k ≤ n, (22a)

Q
k
≤ V HΨkV ≤ Qk, 1 ≤ k ≤ n, (22b)

W k ≤ V HJkV ≤W k, 1 ≤ k ≤ n, (22c)

V HM ijV ≤ F ij , i ∼ j, (22d)

V HT ijV ≤ Lij , i ∼ j, (22e)

where (22a)–(22e) are, respectively, constraints on the real and
reactive powers, the voltage magnitudes, the line flows and
thermal losses.

We do not include line-flow constraints that impose an upper
bound on the apparent power

√
P 2
ij +Q2

ij on each branch
i ∼ j because constraints are not quadratic in the voltages
and hence beyond the scope of our model.

Remark 3 (Objective Functions). We consider different opti-
mality criteria by changing C0 as follows:
• Voltages: C0 = In×n (identity matrix) where we aim to

minimize ‖V ‖2 =
∑
k |Vk|2.

• Power loss: C0 = (Y +Y H)/2 where we aim to minimize∑
i gii|Vi|2 +

∑
i<j gij |Vi − Vj |2.

• Production costs: C0 =
∑
k ckΦk where we aim to

minimize
∑
k ckP

G
k , ck ≥ 0.

C. Conic relaxation of OPF over radial networks

Assume hereafter that OPF is feasible. To conform to the
notations of Section II, we replace the constraint in (22a) by
the equivalent constraints

V H[Φk]V ≤ P k, 1 ≤ k ≤ n,
V H[−Φk]V ≤ −P k, 1 ≤ k ≤ n.

Similarly we rewrite (22b) and (22c). Then the set of matrices
{C1, . . . Cm} and the set of scalars {b1, . . . , bm} in the OPF
problem are defined as

{C1, . . . Cm}
:= {Φk,−Φk,Ψk,−Ψk, Jk,−Jk, 1 ≤ k ≤ n}⋃ {

M ij , T ij , i ∼ j
}
, (23)

{b1, . . . , bm}
:=
{
P k,−P k, Qk,−Qk,W k,−W k, 1 ≤ k ≤ n

}
⋃ {

F
ij
, L

ij
, i ∼ j

}
. (24)

We limit the discussion to OPF instances where the graph
of the power network is acyclic. Denote this graph on n nodes
as T . Then, it can be checked that for all objective functions
considered, the set C = {C0, C1, . . . , Cm} for OPF satisfies

GC = T , (25)

i.e., the sparsity pattern of the matrices in the set C follows the
acyclic graph T of the power network. To explore the relation
in (11) for OPF over T , consider an edge (i, j) in T . The
admittance of the line joining buses i and j is gij− ibij . Then
the complex numbers [Cp]ij , p = 1, . . . ,m are given as (the
computations are provided in the appendix):
(a) [Φi]ij = −gij/2 + ibij/2,
(b) [Φj ]ij = −gij/2− ibij/2,

(c) [Ψi]ij = −bij/2− igij/2,
(d) [Ψj ]ij = −bij/2 + igij/2,
(e) [M ij ]ij = −gij/2 + ibij/2,
(f) [M ji]ij = −gij/2− ibij/2,
(g) [T ij ]ij = [T ji]ij = −gij .
For the objective functions considered, we have
(a) Voltages: [C0]ij = 0,
(b) Power loss: [C0]ij = −gij ,
(c) Production costs: [C0]ij = −gij(ci + cj)/2 + ibij(ci −

cj)/2.
For the purpose of this discussion, consider power loss min-
imization as the objective, i.e., [C0]ij = −gij . Also, assume
gij > bij > 0. We plot the non-zero (i, j)-th entries of the
matrices in C on the complex plane in Figure 2 and label each
point with its corresponding matrix. Clearly if we consider all
the points in Figure 2, there does not exist a line through the
origin such that all these points lie on one side of the line,
i.e., the relation in (11) is not satisfied for the set C.

To apply Theorem 4 to OPF, consider an index-set M ⊆
{1, 2, . . . ,m} such that the relation in (11) is satisfied for
the set of matrices C0 and {Cp, p ∈ M}. This corresponds
to removing certain inequalities in OPF, i.e., bp = +∞ for
p ∈ {1, 2, . . . ,m}\M. For example, removing −Φj from the
set {C1, . . . , Cm} corresponds to setting P j = −∞. Recall
that for any matrix C ∈ C, γij(C) is the angle of the complex
number Cij .

Theorem 6. For OPF with C̃ = {C0, Cp, p ∈ M} over
an acyclic power network T , suppose maxC∈C̃ γij(C) −
minC∈C̃ γij(C) ≤ π for i ∼ j in T . Then the SOCP or
SDP relaxation of OPF is exact.

We explore, through examples, some constraint patterns
for OPF over T where the SOCP or SDP relaxation of OPF
is exact.

Example 1: In Figure 2, consider the (i, j)-th elements of
the following set of matrices:{

Φi,Φj ,Ψi,Ψj ,−Ψi,M
ij ,M ji, T ij = T ji, C0

}
.

This set of points lie on one side of the line passing through
the origin and [Ψi]ij on the complex plane. With this set of
points, associate a constraint pattern defined as follows. For
any point in the diagram that is not a part of this set, the
inequality associated with that matrix is removed from OPF.
For example, the matrices −Φj , −Φi and −Ψj are removed,
which leads to

P j = P i = Q
j

= −∞. (26)

This can be generalized to a constraint pattern over T by
removing the lower bounds on the real powers at all nodes
and the lower bounds on reactive powers at alternate nodes.

Example 2: Suppose P k = Q
k

= −∞ for all nodes k in
T . This corresponds to considering points only on the left-
half plane in Figure 2 for all edges (i, j) in T . Clearly, (11)
is satisfied in this case. In Figure 2, we assume gij > bij > 0.
Regardless of the ordering between gij and bij for edges (i, j)
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Re

Im

−Φi

Ψi

−ΨiΨj

−Ψj

−Φj
Φi, M ij

Φj , M ji

gij/2

gij/2

−gij/2

−gij/2

−bij/2

−bij/2 bij/2

bij/2

T ij , T ji, C0

−gij

Fig. 2: Cij and non-zero [Cp]ij , p = 1, . . .m on the complex plane for OPF for a fixed line (i, j) in tree T .

in T , the set of points considered in this constraint pattern
always lies in the left half of the complex plane.

Removing the lower bounds on the real and reactive power
can be interpreted as load over-satisfaction, i.e., the real and
reactive powers supplied to a node 1 ≤ k ≤ n can be greater
than their respective real and reactive power demands PDk
and QDk . Results showing that OPF on a radial network with
load over-satisfaction can be efficiently solved were previously
reported in [31], [32], [43].

Example 3: Consider voltage minimization, i.e., C0 =
In×n. In Figure 2, consider the (i, j)-th entries of the fol-
lowing set of matrices:

{−Φi,Φj ,−Φj ,Ψi,−Ψj , C0} .

The constraint pattern associated with this set of points is

P i = Qj = Lij = Lji = F ij = F ji = +∞, and Q
i

= −∞.

This set of constraints is consistent with (11) over the edge
(i, j) and we can construct a constraint pattern for the OPF
problem.

IV. NUMERICAL EXAMPLES

A. Numerical techniques

In Section II, we have identified conditions under which a
QCQP problem P over an acyclic graph has an exact SOCP
or SDP relaxation. When these sufficient conditions are not

satisfied, P may not be solvable in polynomial time. For such
a problem P , we now provide a heuristic approach to reach a
feasible point of P , starting from the solution of its SOCP
or SDP relaxation RP . For ease of presentation, we only
consider the SDP relaxation in this section, but the method
can be generally applied to other convex relaxations such as
the SOCP based relaxation. Let W∗ be an optimal solution of
the SDP relaxation RP . If rank W∗ = 1, then the spectral
decomposition of W∗ = (x∗)(x∗)H yields an optimal solution
x∗ of P . If, however, rank W∗ > 1, then f(W∗) may not be a
feasible point of P , because the set C for problem P may not
satisfy the sufficient conditions in Theorem 4. In what follows,
we propose a method to construct a feasible solution x̃ for
P using such an optimal W∗ of RP . The following relation
characterizes the relationship between the optimal solution of
P and its value at x̃.

objective value of RP at W∗
≤ optimum objective value of P
≤ objective value of P at x̃. (27)

In many practical problems where rank W∗ > 1, the principal
eigenvalue of W∗ is orders of magnitude greater than the other
eigenvalues. We use the principal eigenvector to search for a
“nearby” feasible point of P as follows. Let w∗ ∈ Cn be the
principal eigenvector of W∗ and define the starting point x[0]
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of the algorithm as

x[0] := w∗
√

tr(C0W∗).

This scaling ensures that the objective value at x[0] is the
optimum objective value of RP at W∗. An alternate starting
point of the algorithm can be x[0] := f(W∗). If x[0] satisfies
all constraints in P , then the algorithm ends with x̃ = x[0].
Otherwise, we construct a sequence of points (x[1], x[2], . . .)
where x[r + 1] is constructed from x[r] as follows.

1) For p = 1, 2, . . . ,m, linearize the quadratic function
gp(x) = xHCpx around the point x[r] and call this
function g(r)

p (x), i.e.,

g(r)
p (x) = x[r]HCpx[r] + 2 Re

{
x[r]HCp(x− x[r])

}
.

2) For p = 1, 2, . . . ,m, define

s(r)
p (x) :=

{
g

(r)
p (x)− bp, if g(r)

p (x) > bp,

0 otherwise,

as the amount by which the linearized function g
(r)
p

violates the inequality constraint g(r)
p (x) ≤ bp.

3) Compute x[r + 1] using

x[r + 1] = arg min
x∈Cn

r∑
p=1

[s(r)
p (x)]2

subject to: ‖x− x[r]‖1 ≤ γ,

where ‖.‖1 denotes the `1 norm and γ is the maximum
allowable step-size. This is a parameter for the algorithm
and should be chosen such that the linearization g

(r)
p is

a reasonably good approximation of the quadratic form
gp(x) for all p = 1, 2, . . . ,m in the `1 ball centered
around x[r] with radius γ.

4) If x[r + 1] satisfies all of the constraints in P , then the
algorithm ends with x̃ = x[r + 1].

This heuristic approach either ends at a feasible point x̃ of P
or it fails to produce one within a fixed number of iterations.
In the next section, we show that this technique performs quite
well for numerical OPF examples where the SDP relaxation
yields an optimal solution W∗ with rank more than 1.

B. OPF test examples

The SDP relaxation of OPF and the techniques described in
Section III are illustrated on a sample distribution circuit from
Southern California and randomly generated radial circuits.
The SDP is solved in MATLAB using YALMIP [53]. For
cases when the solution of the optimization RP yields a W∗
such that rank W∗ = 1 then the optimal voltage profile (V∗)
of OPF is calculated using W∗ = (V∗)(V∗)H. If the optimal
W∗ does not satisfy the rank condition, the heuristic approach
described above is used to find a feasible point of the OPF.
The feasible point obtained may not be optimal for the original
problem, so we characterized its sub-optimality by defining the
following quantity.

η :=
Obj. value at heuristically reached feasible point
Obj. value at optimal point of relaxed problem

− 1.

Test system SoCal distribution circuit Random radial networks
Minimize Power-loss Voltage Power-loss Voltage
rank W∗ 1 ≥ 1 1 ≥ 1
Mean η N/A 1.8% N/A 0.5%
Maximum η N/A 4.1% N/A 1.5%

TABLE II: Summary of simulation results

Smaller values of η indicate that the feasible point obtained
using the algorithm is close to the theoretical optimum of the
OPF problem.

Throughout this section, let y = (a, b) denote a random
variable y drawn from a uniform distribution over the interval
[a, b]. Using this notation, we describe the test systems used
for the simulations.

1) SoCal Distribution Circuit: The sample industrial distri-
bution system in Southern California has been previously
described in [48]. It has a peak load of approximately
11.3 MW and installed PV generation capacity of 6.4MW.
We modified this circuit by removing the 30MW load at
the substation bus (this load represents other distribution
circuits fed by the same substation) and simulated it with
the parameters provided in Table I. To scale the problem
correctly, all quantities were normalized to per unit (p.u.)
quantities using the base values given in Table I.

2) Random Test Circuits: These circuits are generated using
parameters typical of sparsely loaded rural circuits, as de-
tailed in [54] and employed (with suitable modifications)
in [55], [56]. Around 15-60% of the nodes are assumed
to have 2 kW of PV capacity. The remaining parameters
of these systems are described in Table I.

The tests are run with both voltage and power loss mini-
mization as objective functions. The optimization results are
summarized in Table II. For power loss minimization, we
always obtain a rank 1 optimal W∗.

For voltage minimization, however, we obtain optimal so-
lutions of RP that violate the rank condition. In these cases,
the heuristic approach is used to find a feasible point of the
OPF. We construct the solution based on the complex voltage
Vk = |Vk|eiθk at bus 1 ≤ k ≤ n. For the heuristic algorithm,
define

x := (|V2|, |V3|, . . . , |Vn|, θ2, θ3, . . . , θn),

and set the parameter γ = +∞. In the examples studied, this
approach always yields a feasible point within 5 iterations.
Table II shows the mean and maximum values for η over the
set of test cases performed. These results indicate that our
algorithm generally finds a feasible point of the OPF with an
objective value close to the theoretical optimum and hence
performs well. A general bound on the performance of this
heuristic technique, however, remains an open question.

V. CONCLUSION

QCQP problems are generally non-convex and NP-hard.
This paper proves that a certain class of QCQP problems are
solvable in polynomial-time. We have applied this result to the
optimal power flow problem and derived a set of conditions
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Test system SoCal distribution circuit Random radial networks
Number of nodes (n) 47 50-150
Line impedances (yij)−1 [48, Table 1] (0.33 + i0.38)Ω/km, length = (0.2km, 0.3km)

Voltage limits
p
Wk,

p
Wk 1± 0.05 p.u. at all nodes. 1± 0.05 p.u. at all nodes.

Real power demand PD
k [48, Table 1] (0, 4.5kW )

Reactive power demand QD
k Computed with p.f. = (0.80, 0.98) lagging (0.2PD

k , 0.3PD
k )

Real power gen. limits PV nodes: PG
k = (0.2, 1.0) times capacity, PV nodes: PG

k = (0, 2kW ),
P

G
k , PG

k Substation node: PG
1 = 10MW . Substation node: PG

1 scaled with n.
At all nodes, PG

k = 0. At all nodes, PG
k = 0.

Reactive power gen. limits Q
G
k = 0.3P

G
k , QG

k
= −0.3P

G
k at all nodes. Q

G
k = 0.3P

G
k , QG

k
= −0.3P

G
k at all nodes.

Base quantities Pbase = 1MW , Vbase = 12.35kV (L− L). Pbase = 1MW , Vbase = 12.47kV (L− L).

TABLE I: Circuit parameters for semidefinite relaxation of OPF

under which this non-convex problem admits an efficient solu-
tion. For problems that do not satisfy our sufficient conditions,
we provide a heuristic technique to find a feasible solution.
Simulations suggest that this method often finds a near-optimal
solution for the OPF problem.

VI. APPENDIX

A. Matrices involved in OPF :
Here we compute the (i, j)-th entries of the set of matrices

{C1, . . . , Cm} for OPF. Recall that the power network consid-
ered is GC = T , which is acyclic by hypothesis. From (19),
(20), (21), we have the following relations for 1 ≤ k ≤ n,
p ∼ q and i ∼ j in graph T :

[Φk]ij =

8><>:
1
2
Yij = 1

2
(−gij + ibij) if k = i,

1
2
Y Hij = 1

2
(−gij − ibij) if k = j,

0 otherwise,
(28)

[Ψk]ij =

8><>:
−1
2i Yij = 1

2
(−bij − igij) if k = i,

1
2i Y
H

ij = 1
2
(−bij + igij) if k = j,

0 otherwise,
(29)

[Mpq]ij =

8>>><>>>:
gpq if i = j = p
1
2
(−gpq + ibpq) if (i, j) = (p, q),

1
2
(−gpq − ibpq) if (i, j) = (q, p),

0 otherwise,

(30)

[T pq]ij =

8><>:
gpq if i = j = p or i = j = q,

−gpq if (i, j) = (p, q) or (i, j) = (q, p),

0 otherwise.
(31)
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