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Abstract— The optimal power flow (OPF) problem is funda-
mental in power system operations and planning. Large-scale
renewable penetration calls for real-time feedback control, and
hence the need for fast and distributed solutions for OPF. This
is difficult because OPF is nonconvex and Kirchhoff’s laws are
global. In this paper we propose a solution for radial networks.
It exploits recent results that suggest solving for a globally
optimal solution of OPF over a radial network through the
second-order cone program (SOCP) relaxation. Our distributed
algorithm is based on alternating direction method of multiplier
(ADMM), but unlike standard ADMM algorithms that often
require iteratively solving optimization subproblems in each
ADMM iteration, our decomposition allows us to derive closed
form solutions for these subproblems, greatly speeding up
each ADMM iteration. We present simulations on a real-world
2,065-bus distribution network to illustrate the scalability and
optimality of the proposed algorithm.

I. INTRODUCTION

The optimal power flow (OPF) problem seeks to optimize
certain objective such as power loss and generation cost
subject to power flow equations and operational constraints.
It is a fundamental problem because it underlies many power
system operations and planning problems such as economic
dispatch, unit commitment, state estimation, stability and
reliability assessment, volt/var control, demand response, etc.
The continued growth of highly volatile renewable sources
on distribution systems calls for real-time feedback control.
Solving OPF in such an environment has at least two
challenges.

First the OPF problem is hard to solve because of its
nonconvex feasible set. Recently a new approach through
convex relaxation has been developed to address noncon-
vexity due to the Kirchhoff’s laws. Specifically semidefinite
program (SDP) relaxation [1] and second order cone program
(SOCP) relaxation [2] have bee proposed in the bus injection
model, and SOCP relaxation has been proposed in the branch
flow model [3], [4]. See the tutorial [5], [6] for further
pointers to the literature. When an optimal solution of the
original OPF problem can be recovered from any optimal
solution of a convex relaxation, we say the relaxation is
exact. For radial networks (whose graphs are trees), several
sufficient conditions have been proved that guarantee SOCP
and SDP relaxations are exact. This is important because
almost all distribution systems are radial. Moreover some of
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these conditions have been shown to hold for many practical
networks. In those cases we can rely on off-the-shelf convex
optimization solvers to obtain a globally optimal solution for
the nonconvex OPF problem.

Second most algorithms proposed in the literature are
centralized and meant for applications in today’s energy
management systems that, e.g., centrally schedule a relatively
small number of generators. In future networks that optimize
simultaneously the (possibly real-time) operation of a large
number of intelligent endpoints, a centralized approach will
not scale because of its computation and communication
overhead. In this paper we address this challenge by propos-
ing a distributed algorithm for solving the SOCP relaxation
of OPF for radial networks.

Various distributed algorithms have been developed to
solve the OPF problem. In [7], augmented Lagrangian de-
composition method is used to solve the multi-area OPF
problem where, in each iteration, each agent solves its own
subproblem and communicates its result with neighbors.
These early distributed algorithms do not deal with the
nonconvexity issue of OPF. In contrast, dual decompositions
are applied to solve the SDP relaxation of OPF in [8]. To
improve the convergence rate, alternating direction method
of multiplier (ADMM) [9]–[11] have been applied to develop
distributed algorithms for (possibly the convexified) OPF
problems.

Each iteration of an ADMM algorithm needs to solve
multiple subproblems to update the primal variables [12].
The total computation time is determined by the number of
iterations and the computation time to solve the subproblems
in each iteration. To improve the total computation time, we
can reduce the computation time for each subproblem. To
the best of our knowledge, all ADMM algorithms for OPF
in the literature solve these subproblems iteratively. In this
paper we minimize the computation time of each iteration
by deriving a closed form solution for the subproblems,
significantly reducing the overall computation time.

Specifically we decompose the OPF problem into smaller
subproblems based on ADMM. The proposed algorithm has
two advantages: 1) There is a closed form solution for
each subproblem, thus eliminating the need for an iterative
procedure for each ADMM iteration. 2) Communication is
only required between adjacent buses.

We demonstrate the scalability of the proposed algorithms
using a real-life network. In particular, we show that the
algorithm converges within 0.6s for a 2,065-bus system. As
expected, solving each subproblem in a closed form can be
orders of magnitude faster than solving it iteratively using
an off-the-shelf optimization solver CVX [13]: our solver



Fig. 1: Notations.

requires on average 6.8 × 10−4s while CVX requires on
average 0.5s.

The rest of the paper is structured as follows. The OPF
problem is defined in section II. In section III, we develop
our distributed algorithm. In section IV, we test its scala-
bility using data from a real-world distribution network. We
conclude in section V.

II. PROBLEM FORMULATION

In this section, we define the optimal power flow (OPF)
problem on a distribution network and review how to solve
it through SOCP relaxation.

A. Branch flow model

We model a distribution network by a directed tree graph
T := (N , E) where N := {0, . . . , n} represent the set of
buses and E represent the set of distribution lines connecting
the buses in N . Index the root of the tree by 0 and let N+ :=
N \ {0} denote the other buses. For each node i, it has a
unique ancestor Ai and a set of children nodes, denoted by
Ci. We adopt the graph orientation where every line points
towards the root. Each directed line connects a node i and
its unique ancestor Ai. We hence label the lines by E :=
{1, . . . , n} where each i ∈ E denotes a line from i to Ai.

The root of the tree T is a substation bus that is connected
to the transmission network. It has a fixed voltage and
redistributes the bulk power it receives from the transmission
network to other buses. For each bus i ∈ N , let Vi = |Vi|eiθi
be its complex voltage and vi := |Vi|2 be its magnitude
squared. Let si := pi+iqi be its net complex power injection
which is defined as generation minus load. For each line
i ∈ E , let zi = ri+ ixi be its complex impedance. Let Ii be
the complex branch current from bus i to Ai and `i := |Ii|2
be its magnitude squared. Let Si := Pi + iQi be the branch
power flow from bus i to Ai. The notations are illustrated
in Fig. 1. A variable without a subscript denotes a column
vector with appropriate components, as summarized below.

v := (vi, i ∈ N ) p := (pi, i ∈ N ) q := (qi, i ∈ N )
` := (`i, i ∈ E) P := (Pi, i ∈ E) Q := (Qi, i ∈ E)
We adopt a branch flow model first proposed in [14],

[15] for radial networks. It ignores the phase angles of
voltages and currents and uses only the variables x :=
(v, `, P,Q, p, q). Compared with bus injection model, branch
flow model is more numerical stable and has broad applica-
tion in distribution network, [14]–[16]. Given the network

T , the branch flow model is defined by:

vAi = vi − 2(riPi + xiQi) + `i(r
2
i + x2i ) i ∈ E (1a)∑

j∈Ci

(Pj − `jrj) + pi = Pi i ∈ N (1b)∑
j∈Ci

(Qj − `jxj) + qi = Qi i ∈ N (1c)

P 2
i +Q2

i = vi`i i ∈ E (1d)

where P0, Q0 = 0 for ease of presentation. Given a vector x
that satisfies (1), the phase angles of the voltages and currents
can be uniquely determined if the network is a tree. Hence
this (relaxed) model (1) is equivalent to a full AC power flow
model. See [4, Section III-A] for details.

B. OPF and SOCP relaxation

The OPF problem seeks to optimize certain objective, e.g.
total power loss, subject to power flow equations (1) and
various operational constraints. We consider an objective
function of the following form:

F (x) =
∑
i∈N

fi(pi, `i) (2)

For instance, to minimize total power loss, we can set
f0(p0) = 0 and fi(pi, `i) = `iri for each i ∈ N+.

We consider two operational constraints. First, the power
injection at each bus i ∈ N+ is constrained to be in a region
Si, i.e.

(pi, qi) ∈ Si (3a)

For controllable load, whose real power can vary within
[p
i
, pi] and reactive power can vary within [q

i
, qi], the

injection region Si = {(p, q) ∈ R2 | p ∈ [p
i
, pi], q ∈ [q

i
, qi].

Second, the voltage magnitude at each load bus i ∈ N+

needs to be maintained within a prescribed region, i.e.

vi ≤ vi ≤ vi (3b)

Typically the voltage magnitude is allowed to deviate by 5%
from its nominal value, i.e. vi = 0.952 and vi = 1.052.

The OPF problem is:

OPF: min
x

∑
i∈N

fi(pi, `i) (4)

s.t. (1) and (3)

The OPF problem (4) is nonconvex due to the equality
(1d). This is relaxed to inequality in [3], [4]

P 2
i +Q2

i ≤ vi`i i ∈ N+ (5)

resulting in a (convex) second-order cone program (SOCP):

ROPF: min
x

∑
i∈N

fi(pi, `i) (6)

s.t. (1a)− (1c), (5) and (3)

Clearly the relaxation ROPF (6) provides a lower bound
for the original OPF problem (4) since the original feasible
set is enlarged. The relaxation is called exact if every optimal
solution of ROPF attains equality in (5) and hence is also



optimal for the original OPF. For network with tree topology,
SOCP relaxation is exact under some mild conditions [4],
[17].

III. DISTRIBUTED ALGORITHM FOR OPF

We assume SOCP relaxation is exact and develop in this
section a distributed algorithm that solves ROPF. We first
review a standard alternating direction method of multiplier
(ADMM). We then make use of the structure of ROPF to
speed up the standard ADMM algorithm by deriving close
form expressions for the optimization subproblems in each
ADMM iteration.

A. Preliminary: ADMM

ADMM blends the decomposability of dual decomposition
with the superior convergence properties of the method of
multipliers [12]. It solves optimization problem of the form:

min
x,z

f(x) + g(z)

s.t. x ∈ Kx, z ∈ Kz (7)
Ax+Bz = c

where Kx,Kz are convex sets. Let λ denote the Lagrange
multiplier for the constraint Ax + Bz = c. Then the
augmented Lagrangian is defined as

Lρ(x, z, λ) := f(x) + g(z) + λT (Ax+Bz − c)
+
ρ

2
‖Ax+Bz − c‖2,

where ρ ≥ 0 is a constant. When ρ = 0, the augmented
Lagrangian reduces to the standard Lagrangian. ADMM
consists of the iterations:

xk+1 ∈ arg min
x∈Kx

Lρ(x, z
k, λk) (8a)

zk+1 ∈ arg min
z∈Kz

Lρ(x
k+1, z, λk) (8b)

λk+1 = λk + ρ(Axk+1 +Bzk+1 − c) (8c)

Compared to dual decomposition, ADMM is guaranteed
to converge to an optimal solution under less restrictive
conditions. Let

rk := ‖Axk +Bzk − c‖ (9a)
sk := ρ‖ATB(zk − zk−1)‖ (9b)

They can be viewed as the residuals for primal and dual
feasibility. Under mild conditions, it can be shown that

lim
k→∞

rk = 0, lim
k→∞

sk = 0

implying

lim
k→∞

f(xk) + g(zk) = p∗

One can refer to [12] for details.

B. Decoupling in ADMM

In applying ADMM to ROPF, we first exploit the structure
of ROPF to derive subproblems that are decoupled and can be
solved concurrently. We then derive closed form solutions to
these subproblems. In this subsection we explain the standard
idea of decoupling through local variables, which we will use
in the next subsection.

Consider the problem:

min
x

f(x) (10a)

s.t. aTi x = bi, i ∈ I (10b)
x ∈ Kz (10c)

where f(x) is a convex function and Kz is a convex set.
The variable x must satisfies the linear constraints (10b) for
all i ∈ I as well as be in Kz . As we will see below, for
speedup, we wish to make the constraints (10b) local so
that the update (8) can be decomposed into several small
optimization subproblems that can be solved simultaneously.
To this end we create local copies of x and compute them
in parallel. Each copy satisfies a different subset of the
constraints before the algorithm converges. At optimality, all
the local copies are required to be equal and hence satisfy
all the constraints.

Formally, let {Il, 1 ≤ l ≤ m} be a partition of I, i.e. Il
are disjoint and ∪1≤l≤mIl = I. There are m+1 constraints
defined by the sets Kz and

Klx := {x ∈ Rn | aTi x = bi, i ∈ Il}, 1 ≤ l ≤ m

Consider the m + 1 copies (z, (x(l), 1 ≤ l ≤ m)) of the
original variable. The decoupled version of (10) is:

min
x(l),z

f(z)

s.t. z ∈ Kz (11)
x(l) ∈ Klx, 1 ≤ l ≤ m
x(l) − z = 0, 1 ≤ l ≤ m

Let x := (x(l), 1 ≤ l ≤ m) denote the variable obtained by
stacking all vectors x(l), 1 ≤ l ≤ m. Relax the last equality
for each l. Let λ(l) denote the corresponding Lagrange
multipliers and λ := (λ(l), 1 ≤ l ≤ m). Then the augmented
Lagrangian is

Lρ(x, z, λ) := f(z) +

m∑
l=1

(
(λ(l))T (x(l) − z) + ρ

2
‖x(l) − z‖2

)
We can update the primal variables (x, z) and the multipliers
λ according to (8).

Next, we show that two partitions (m = 2) are sufficient
for designing distributed OPF algorithm using this approach.

C. Distributed OPF algorithm

We now derive a distributed algorithm for solving ROPF
(6) that has the following advantages:
• Each bus only needs to solves a local subproblem

in each iteration of (8). Moreover there is a closed
form solution for each subproblem, in contrast to most



Fig. 2: Example of a graph with tree topology.

algorithms that employ iterative procedure to solve each
subproblem [7]–[9], [11], [18]–[21].

• Communication is only required between adjacent
buses.

We can write the ROPF problem (6) in the form of (10) as:

min
x

∑
i∈N

fi(pi, `i)

s.t. x satisfies (1a)− (1c)
x ∈ Kz

where Kz := {z | z satisfies (3) and (5)}. Next, we partition
the constraints in (1a)-(1c) to write it equivalently in the form
of (11) such that the update in (8) can be done simultaneously
by each bus.

We assume each bus i ∈ N is an agent with its local
variables xi := (vi, `i, Pi, Qi, pi, qi). Then the constraints
in Kz are local, i.e. they are separable for each agent
i. Note that the network T is a tree, which is a bipar-
tite graph and can be partitioned into two groups I1 :=
{i ∈ N | i is in the odd layer} and I2 := {i ∈ N |
i is in the even layer}. For instance, there are four layers in
Fig. 2 and I1 = {1, 4, 5, 6} and I2 = {2, 3, 7, 8, 9}. Let

Klx = {x(l)i satisfies (1a)-(1c) for i ∈ Il}, l = 1, 2

Under such partition, bus i ∈ I1 (I2) is only coupled with
buses k ∈ I2 (I1). In particular, by (1a), each bus i needs
the voltage vAi from its ancestor Ai. Thus we create a copy
vAi,i, representing the replication of vAi at bus i. On the
other hand, in (1b) and (1c), each bus i needs `j , Pj , Qj from
all of its children j ∈ Ci and we create a copy `j,i, Pj,i, Qj,i
of each j ∈ Ci at bus i. Then the ROPF problem (6) can be
written in the form of (11).
E-ROPF:

min
x,z

∑
i∈N

fi(p
(z)
i , `

(z)
i )

s.t. v
(l)
Ai,i

= v
(l)
i − 2(riP

(l)
i + xiQ

(l)
i ) + `

(l)
i (r2i + x2i ) (12a)

i ∈ E l ∈ {1, 2}∑
j∈Ci

(P
(l)
j,i − `

(l)
j,irj) + p

(l)
i = P

(l)
i i ∈ N l ∈ {1, 2} (12b)∑

j∈Ci

(Q
(l)
j,i − `

(l)
j,ixj) + q

(l)
i = Q

(l)
i i ∈ N l ∈ {1, 2} (12c)

(P
(z)
i )2 + (Q

(z)
i )2 ≤ v(z)i `

(z)
i i ∈ E (12d)

(p
(z)
i , q

(z)
i ) ∈ Si i ∈ N (12e)

vi ≤ v
(z)
i ≤ vi i ∈ N (12f)

x(l) − z = 0 l ∈ {1, 2} (12g)

where (12a)-(12c) form (K(l)
x , l = 1, 2) and (12d) − (12f)

form Kz . The value of the superscript l depends on the
partition that i belongs to, i.e. l = 1 (2) if i ∈ I1 (I2).
Let λ, γ and µ be Lagrangian multipliers associated with
x(l) − z = 0, specifically

λ1,i: v
(l)
i − v

(z)
i = 0 λ2,i: `

(l)
i − `

(z)
i = 0

λ3,i: P
(l)
i − P

(z)
i = 0 λ4,i: Q

(l)
i −Q

(z)
i = 0

λ5,i: p
(l)
i − p

(z)
i = 0 λ6,i: q

(l)
i − q

(z)
i = 0

µ1,i: `
(l)
i,Ai
− `(z)i = 0 µ2,i: P

(l)
i,Ai
− P (z)

i = 0

µ3,i: Q
(l)
i,Ai
−Q(z)

i = 0

γj : v
(l)
i,j − v

(z)
i = 0 for j ∈ Ci

Denote

x
(l)
i := (v

(l)
i , `

(l)
i , P

(l)
i , Q

(l)
i , p

(l)
i , q

(l)
i )

zi := (v
(z)
i , `

(z)
i , P

(z)
i , Q

(z)
i , p

(z)
i , q

(z)
i )

x
(l)
i,Ai

:= (`
(l)
i,Ai

, P
(l)
i,Ai

, Q
(l)
i,Ai

)

λi := (λk,i | k = 1, 2, 3, 4, 5, 6)

µi := (µk,i | k = 1, 2, 3)

Then the variables maintained by each bus (agent) i are:

Ai := {x(l)i , x
(l)
i,Ai

, {v(l)i,j , γj | j ∈ Ci}, zi, λi, µi, }.

Next, we demonstrate that the E-ROPF problem (12)
can be solved in a distributed manner, i.e. both the x-
update (8a) and z-update (8b) can be decomposed into small
subproblems that can be solved simultaneously. For ease of
presentation, we remove the iteration number k in (8) for
all the variables, which will be updated accordingly after
each subproblem is solved. The augmented Lagrangian for
modified ROPF problem is given in (13). We abuse notations
in (13) and denote x

(l)
i,Ai
− zi := (`

(l)
i,Ai
− `

(z)
i , P

(l)
i,Ai
−

P
(z)
i , Q

(l)
i,Ai
−Q(z)

i ) although there are 3 entries in x(l)i,Ai but
6 entries in zi. By (13c), in the x-update step (8a), we solve

arg min
x∈Kx

Lρ(x, z, λ, γ, µ) = arg min
x∈Kx

∑
i∈N

Gi(x
(l)),

where

Gi(x
(l)) := λTi x

(l)
i +

∑
j∈Ci

µTj x
(l)
j,i + γiv

(l)
Ai,i

+

ρ

2

∥∥∥x(l)i − zi∥∥∥2 + ∑
j∈Ci

∥∥∥x(l)j,i − zj∥∥∥2 + (v(l)Ai,i − v(z)Ai

)2
For each agent i, the corresponding subproblem is

min Gi(x
(l)) (14)

s.t. v
(l)
Ai,i

= v
(l)
i − 2

(
riP

(l)
i + xiQ

(l)
i

)
+ `

(l)
i

(
r2i + x2i

)
∑
j∈Ci

(
P

(l)
j,i − `

(l)
j,irj

)
+ p

(l)
i = P

(l)
i∑

j∈Ci

(
Q

(l)
j,i − `

(l)
j,ixj

)
+ q

(l)
i = Q

(l)
i

which takes the following form

min
x

ρ

2
‖x‖22 + cTx s.t. Bx = 0 (15)



Lρ(x, z, λ, γ, µ) (13a)

=
∑
i∈N

fi (p(z)i
)

+ λ
T
i

(
x
(l)
i
− zi

)
+ µ

T
i

(
x
(l)
i,Ai

− zi

)
+

∑
j∈Ci

γj

(
v
(l)
i,j
− v(z)

i

)
+
ρ

2

∥∥∥∥x(l)i − zi

∥∥∥∥2 +

∥∥∥∥x(l)i,Ai − zi
∥∥∥∥2 +

∑
j∈Ci

(
v
(l)
i,j
− v(z)

i

)2
 (13b)

=
∑
i∈N

fi (p(z)i
)

+ λ
T
i

(
x
(l)
i
− zi

)
+

∑
j∈Ci

µ
T
j

(
x
(l)
j,i
− zj

)
+ γi

(
v
(l)
Ai,i

− v(z)
Ai

)
+
ρ

2

∥∥∥∥x(l)i − zi

∥∥∥∥2 +
∑
j∈Ci

∥∥∥∥x(l)j,i − zj
∥∥∥∥2 +

(
v
(l)
Ai,i

− v(z)
Ai

)2
 (13c)

whose close form solution is given as

x =
1

ρ
(BT (BBT )−1Bc− 1

ρ
c

Prior to performing the update, each agent i needs to request
variables from its parent Ai and children j ∈ Ci. In
particular, it needs to get v(l)Ai,i, v

(z)
Ai

and γi from its ancestor
Ai and x(l)j,i , zj , µj from all of its children j ∈ Ci. After the
update, it needs to send the updated variables back to its
ancestor Ai and its children j ∈ Ci. As we will see, only
the x update requires communication with neighbors.

Based on (13b), in the z-update step, we solve

arg min
z∈Kz

Lρ(x, z, λ, γ, µ) = arg min
z∈Kz

∑
i∈N

Hi(z),

where

Hi(z) := f
(
p
(z)
i , `

(z)
i

)
− λTi zi − µTi zi −

∑
j∈Ci

γjv
(z)
i +

ρ

2

∥∥∥x(l)i − zi∥∥∥2 + ∥∥∥x(l)i,Ai − zi∥∥∥2 + ∑
j∈Ci

(
v
(l)
i,j − v

(z)
i

)2
The subproblem solved by each agent i is

min Hi(z)

s.t. (P
(z)
i )2 + (Q

(z)
i )2 ≤ v(z)i `

(z)
i

vi ≤ v
(z)
i ≤ vi(

p
(z)
i , q

(z)
i

)
∈ Si

Suppose fi(p
(z)
i , `

(z)
i ) is linear or quadratic in its argument.

Let κ = (|Ci|+1)−
1
2 and scale v(z)i down by κ in the above

problem. Then it takes the following form:

min
y

6∑
i=1

(y2i + ciyi) (16)

s.t. y21 + y22 ≤ κ2y3y4
y
3
≤ y3 ≤ y3

(y5, y6) ∈ Si
Note that (y1, . . . , y4) and (y5, y6) are independent in the
optimization problem (16). Thus we have two independent
subproblems. The first subproblem solves

min
y5,y6

6∑
i=5

(y2i + ciyi) s.t. (y5, y6) ∈ Si

which determines the update of (y5, y6). The solution is

(y5, y6) =

([
−c5
2

]pi
p
i

,

[
−c6
2

]qi
q
i

)
,

where [x]ba := min{b,max{x, a}}. The second subproblem
solves

min
y1,y2,y3,y4

4∑
i=1

(y2i + ciyi)

s.t. y21 + y22 ≤ k2y3y4
y
3
≤ y3 ≤ y3

which determines the update of (y1, . . . , y4). Due to space
limitation, we will not derive the close form expression here
and interested readers may refer to [22, Appendix I]. After
the z-update, we update the Lagrange multipliers for the
relaxed constraints as (8c). Both the z-update and multiplier
update steps only involve local variables of an agent and no
communication is required.

Finally, we specify the stopping criteria for the algorithm.
Empirical results show that the the solution is accurate
enough when both the primal residual rk defined in (9a)
and the dual residual sk defined in (9b) are below 10−4

√
N ,

where N is the number of buses. The pseudo code for the
algorithm is summarized in Table I.

TABLE I: Distributed algorithm of OPF

Distributed Algorithm of OPF
Input: network T , power injection region Si, voltage region (vi, vi),

line impedance zi
Output: voltage v, power injection s
1. Initialize the variables with any number.
2. Iterate the following step until both the primal residual sk (9a) and
the dual residual rk (9b) are below 10−4

√
N .

a. x-update: each agent i solves (14) to update x.
b. z-update: each agent i solves (16) to update z.
c. multiplier update: update λ, µ, γ by (8c).

IV. CASE STUDY

To demonstrate the scalability of the distributed algorithm
proposed in section III, we test it on the model of a 2,065-
bus distribution circuit in the service territory of the Southern
California Edison. There are 1,409 household loads, whose
power consumptions are within 0.07kw–7.6kw and 142 com-
mercial loads, whose power consumptions are within 5kw–
36.5kw. There are 135 rooftop PV panels, whose nameplates
are within 0.7–4.5kw, distributed across the 1,409 houses.

The network is unbalanced three phase. We assume that
the three phases are balanced and consider a single phase
network. The voltage magnitude at each load bus is allowed
within [0.95, 1.05] per unit (pu), i.e. vi = 1.052 and vi =
0.952 for i ∈ N+. The control devices are the rooftop
PV panels whose reactive power injections are controlled.
The objective is to minimize power loss across the network,



(a) Primal and dual residual (b) Objective value

Fig. 3: Simulation results for 2065 bus Rossi circuit.

namely fi(pi, `i) = `iri for i ∈ N+ in (2). Each bus is an
agent and there are 2,065 agents in the network that solve
the OPF problem in a distributed manner.

The algorithm is implemented in Matlab 2013a and run on
Macbook pro 2013 with i5 dual core processor. We mainly
focus on the following aspects:
• Solution feasibility: the primal residual rk defined in

(9a) measures the feasibility of the solution for ADMM
[12]. In our algorithm, (12g) are relaxed and rk =√
‖(x(1))k − zk‖2 + ‖(x(2))k − zk‖2 with respect to

the iterations k.
• Optimality: the dual feasibility error sk defined in (9b)

measures the optimality of the solution for ADMM [12].
In our algorithm, the dual residual sk =

√
2ρ‖zk −

zk−1‖ with respect to the iterations k.
• Computation time: the proposed distributed algorithm

is run on a single machine. We can divide the total
time by the number of agents to roughly estimate the
time required for each agent if the algorithm is run on
distributed severs (excluding communication overhead).

The stopping criteria is that both the primal and dual
residual are below 10−4

√
N and Figure 3a illustrates the

evolution of rk/
√
N and sk/

√
N over iterations k. The

stopping criteria are satisfied after 1, 114 iterations. The
evolution of the objective value is illustrated in Figure 3b.
It takes 1,153s to run 1,114 iterations on a single computer.
Then the average time spent by each agent is roughly 0.56s
(excluding communication overhead) if we implement the
algorithm in a distributed manner.

Moreover, we show the advantage of deriving close form
expression by comparing the computation time of solving
the subproblems between off-the-shelf solver (CVX) and our
algorithm. In particular, we compare the average computation
time of solving the subproblem in both the x and z update.
In the x update, the average time required to solve the
subproblem is 1.7 × 10−4s for our algorithm but 0.2s for
CVX. In the z update, the average time required to solve
the subproblem is 5.1×10−4s for our algorithm but 0.3s for
CVX. Thus, each ADMM iteration takes about 6.8× 10−4s
for our algorithm but 0.5s for using iterative algorithm.

V. CONCLUSION

In this paper, we have developed a distributed algo-
rithm for optimal power flow problem based on alternating
direction method of multiplier. We have derived a close

form solution for the subproblems solved by each agent
thus significantly reducing the computation time. Preliminary
simulation shows that the algorithm is scalable to a 2,065-bus
system.
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