Optimal Demand Response Based on Utility
Maximization in Power Networks

Na Li, Lijun Chen and Steven H. Low
Engineering & Applied Science Division, California Insti¢ of Technology, USA

Abstract— Demand side management will be a key component greatly and save a large amount of generation cost without
of future smart grid that can help reduce peak load and adapt hurting customers’ utility; here again, battery amplifi¢dst
elastic demand to fluctuating generations. In this paper, we panefit Fifth, the cost of battery (such as lifetime in terms

consider households that operate different appliances itading . . . . . .
PHEVs and batteries and propose a demand response approachOf charging/discharging cycles) is important: the benefit o

based on utility maximization. Each appliance provides a again ~demand response increases with lower battery cost. Finally
benefit depending on the pattern or volume of power it consume as the number of the households increases, the benefit of our

Each household wishes to optimally schedule its power consp-  demand response increases but will eventually saturate.
tion so as to maximize its individual net benefit subject to veous

consumption and power flow constraints. We show that there  There exists a large literature on demand response, seg, e.g
exist time-varying prices that can align individual optimality with  [1], [2], [3], [4], [3], [6], [7], [8], [9], [10]. We briefly discuss
social optimality, i.e., under such prices, when the housefids some that are directly relevant to our paper. First there are
selfishly optimize their own benefits, they automatically ao papers on modeling specific appliances. For instance, [d] an

maximize the social welfare. The utility company can thus . L . .
use dynamic pricing to coordinate demand responses to the [2] consider the electricity load control with thermal mass

benefit of the overall system. We propose a distributed algithm  buildings; [3] considers the coordination of charging PHEV
for the utility company and the customers to jointly compute with other electric appliances. Then, there are papers en th

this optimal prices and demand schedules. Finally, we pres¢ coordination among different appliances. [4] studiesteigity
simulation results that illustrate several interesting properties of usage for a typical household and proposes a method for cus-
the proposed scheme. . . L
tomers to schedule their available distributed energyuess
to maximize net benefits in a day-ahead market. [5] proposes a
|. INTRODUCTION residential energy consumption scheduling framework twhic

attempts to achieve a desired trade-off between minimizing

Demand side management will be a key component gfe ejectricity payment and minimizing the waiting time for
future smart grid that can help reduce peak load and adgpl gperation of each appliance in household in presence of
elastic demand to fluctuating generations. In this paper, We o4\ time pricing tariff by doing price prediction based o
consider households that operate different appliancésding prior knowledge. While in practice, for different appliasc

PHEVs and batteries and propose a demand response approgehousehold may have a different objective than waitimeti
based on utility maximization. Each appliance provides Br the operation of the appliance.

certain benefit depending on the pattern or volume of power ) ) )
it consumes. Each household wishes to optimally scheduile it BeSides the work such as [4], [5] which considers a sin-
power consumption so as to maximize its individual net bene@® household demand response given a pricing scheme, [6]
subject to various consumption and power flow constraints. \gONsiders a power network where end customers choose their
show that there exist time-varying prices that can aligri-indd&ily schedules of their household appliances/loads byimga
vidual optimality with social optimality, i.e., under supkices, 9@mes among themselves and the utility company tries totadop
when the households selfishly optimize their own benefies; thadequate pricing tariffs that differentiate the energygesa
automatically also maximize the social welfare. The wilitime and level to make the Nash equilibrium minimize the
company can thus use dynamic pricing to coordinate demafifT9y costs. However, they assume that customers have full
responses to the benefit of the overall system. We proposkn@wledge of generation cost function and in their proposed
distributed algorithm for the utility company and the custys @lgorithm they require customers to update their energy con
to jointly compute this optimal prices and demand schedulg&/Mmption scheduling asynchronously, both of which are hard
Finally, we present simulation results that illustrate esay © implementin practice. [7] considers a centralized caxpl
interesting properties of the proposed scheme, as follows. Pid market-clearing mechanism where customers submi¢-pric
First, different appliances are coordinated indirectlyrégl- S€Nsitive bids in the day-ahead market, they did not study th
time pricing, so as to flatten the total demand at differespPecific electricity consumptions model for the household.

times as much as possible. Second, compared with no dstations. We useg; ,(t) to denote the power demanded by
mand response or flat-price schemes, real-time pricingris veustomer for appliances at timet. Then,g; o := (¢;,q (), ¥t)
effective in shaping the demand: it not only greatly reduceenotes the vector of power demands ovee 1,...,T;
the peak load, but also the variation in demand. Third, thg := (¢;«,Va € A;) denotes the vector of power demands
integration of the battery helps reap more benefit from demafor all appliances in the collectiond; of customeri; and
response: it does not only reduce the peak load but further= (g;, Vi) denotes the vector of power demands from all
flattens the entire profile and reduce the demand variati@mustomers. Similar convention is used for other quanttiesh
Forth, the real-time pricing scheme can increase the logidifa as battery charging schedulest), r;, r.



[l. SYSTEM MODEL . a set of linear inequalitiesi*%q; , < 7;, on the vector

Consider a sefV of households/customers that are served POWElGi.a-
by a single utility company. The utility company participatin In Section 1V, we will describe in detail hOW we model various
wholesale markets (day-ahead, real-time balancing, lancil appliances through appropriate matricé€s® and vector; q.
services) to purchase electricity from generators andsk#it  Note that inelastic load, e.g., minimum refrigerator pavean
to the N customers in the retail market. Even though wholesalg@ modeled byg; q(t) > ¢, , that says the appliance of
prices can fluctuate rapidly by large amounts, currentlytmostomeri requires a minimum powey, at all timest. This
utility companies hide this complexity and volatility frotineir is a linear inequality constraint and pért afq; o <nig.
customers and offer electricity at a flat rate (fixed unit @yjc
perhaps in multiple tiers based_ on a customer’.s consumptien Energy storage
Even though the wholesale prices are determined by (sched- . : _
uled or real-time) demand and supply and by congestion in!n addition to appliances, a customemay also possess
the transmission network (except for electricity prowisid a t_)attery Whlch_ provides fl_thher flexibility for optimizati
through long-term bilateral contracts), the retail priees set °f IS consumption across time. We denote By the battery
statically independent of the real-time load and congastic®@Pacity, bybi() the energy level of the battery at tinie
Flat-rate pricing has the important advantage of being lza'm&md byr;(t) thg power (energy per period) charged to (when
and predictable, but it does not encourage efficient use To’?t) > 0) or discharged from (when(t) < O? the b.at'tery at
electricity. In this paper, we propose a way to use dynanﬁ'Ene t. Assume that b_attery power leakage is negligible. Then
pricing in the retail market to coordinate the customer’® Model the dynamics of the battery energy level by

demand responses to the benefit of individual customers and t

the overall system. We now present our model, describe how bi(t) = Y ri(r) +b:(0) 1)

the utility should set their prices dynamically, how a custs T=1

should respond, and the properties of the resulting operatBattery usually has an upper bound on charge rate, denoted by

point. ri** for customeri, and an upper bound on discharge rate,
We consider a discrete-time model with a finite horizon thalenoted by—r"" for customeri. We thus have the following

models a day. Each day is divided irfotimeslots of equal constraints orb;(t) andr;(t):

duration, indexed by € 7 := {1,2,--- ,T'}. 0 < bi(t) < B PN < (f) < e @

A. Utility company When the battery is discharged, the discharged power is used
by other electric appliances. of customdlt is reasonable to
“ssume that the battery cannot discharge more power than the
pliances need, i.e57i(t) < > ,c 4. ¢i.a(t). Moreover, in
der to make sure that there is a certain amount of electric

desi f the retail pri ds 1o at least thei energy in the battery at beginning of the next day, we impose

esign of the retail prices needs o at least recover tamgNN, \mininyym on the energy level at the end of control horizon:
costs of the utility company, including the payments it irscu b(T) > ~:B;, wherer; € (0, 1]
il K3 19 3 b .

in the various wholesale markets. It is an interesting subje The cost of operating the batter is modeled by a function

that_is beyond the SCcope of this paper. I_:or simplicity, Weengbam) that depends on the vector of charged/discharged power
the important assumption that this design can be summarized_

. o 7; .= (ri(t),t € T). This cost, for example, may correspond
by_a cost funcnonC(Q,_t) that specifies the cost for theto the amortized purchase and maintenance cost of the yatter
utility company to provideQ amount of power to theV

; ttime. Th dell f cost function | . over its lifetime, which depends on how fast/much/oftersit i

customers at fim € mocieling of costfunction is an ac IVecharged and discharged. The cost functionis assumed to

research issue [11], [10], [7]. Here we assume that the ¢ %t ;
. : : oo a convex function of the vectoy.

function C(Q,t) is convex increasing i) for eacht. The

utility company sets the price®(t),t € T) according to an

algorithm described below.

The utility company serves as an intermediary that parti
pates in multiple wholesale markets, including day-ahe=al;
time balancing and ancillary services, to provision enou
electricity to meet the demands of th€ customers. The

I1l. EQUILIBRIUM AND DISTRIBUTED ALGORITHM
A. Equilibrium

With the battery, at each timethe total power demand of

. : customer; is
Each customei € N operates a sefl; of appliances such

as air conditioner, refrigerator, plug-in hybrid electviehicle Qi(t) = Z Gi,a(t) +7i(t) 3
(PHEV), etc. For each applianee € A; of customeri, we a€A;
denote byg; .(t) its power draw at time¢ € 7, and byg;. We assume that the utility company is regulated so that
the vector(g;,«(t),t € T) of power draws over the whole day.its objective is not to maximize its profit through selling
An applianceq is characterized by two parameters: electricity, but rather to induce customers’ consumptiorai
« a utility functionU; ,(q;,,) that quantifies the utility user way that maximizes the social welfare, total customer tytili
i obtains when it consumeg ,(t) power at each time minus the utility’s cost of providing the electricity dernded
teT,; and by all the customers. Hence the utility company aims to solve

B. Customers



Utility's objective (max welfare): Theorem 2:There exists an equilibriup® and (g}, v, Vi).
Moreover,p*(t) = C'(3>_, Qi (t)) > 0 for each timet.

o Z <Z Usaldia) = Di(ri)) Proof: Write the utility company’s problem as
a€A;

N Z ¢ <Z Q'(ﬂ) (4) (q{rv}?exx 21: Vilgi,ri) — zt: C (Z Qi(ﬂ)

¢ i s. t. Qi(t) = Z Gia(t) +1i(t), Vit

i

st Ao <Mia, Va,i (5) aeA;
0 < Qi(t) < QMaX vy g (6) whereVi(gi,ri) := Y oc 4, Uia(gi,a)—Di(r;) and the feasible
ri € Ri Vi (7 setX is defined by the constraints (5)—(9). Clearly, an optimal

solution(g*, r*) exists. Moreover, there exist Lagrange multi-
where Q;(t) is defined in (3), the inequality (5) models thepliers p;(t), Vi, t, such that (taking derivative with respect to
various customer appliances (see Section IV for detait®), tQ;(t))
lower inequality of (6) says that customé&s battery cannot
provide more power than the total amount consumed bysall pi(t) = ' <Z Q;‘(t)) >0
appliances, and the upper inequality of (6) imposes a bound i
on the total power drawn by customérThe constraint (7) Since the right-hand side is independent ipfthe utility
models the operation of customes battery with the feasible company can set the prices as(t) := p;(t) > 0 for all
setR; defined by: for allt, the vectors:; € R; if and only if . One can check that the KKT condition for the utility’s
problem are identical to the KKT conditions for the collecti
‘0 < bi(t) < Bi, bi(T) 2B ®)  of customers’ problems. Since both the utility’s problend an
S < () <o (9) all the customers’ problems are convex, the KKT conditions

. . . . are both necessary and sufficient for optimality. This psove
whereb;(t) is defined in terms ofr;(7), 7 < t) in (1). the theorem y P y p.

By assumption, the objective function is concave and the
feasible set is convex, and hence an optimal point can @ Distributed algorithm

principle be computed centrally by the utility company. ghi Theorem 2 motivates a distributed algorithm where the util-

however, W'I.l. require the ut|I|ty_ company to know all t_heity company and the customers jointly compute an equiliriu
cus_tom_er utility a_md cogt functions and aII_ the ConStr&_"_mBased on a gradient algorithm, where the utility company set
which is clearly |n'1pracftlcal. The st;iatggy 'Z for theduw't the prices to be the marginal costs of electricity and each
company to set prices := (p(t), £ € T) in order to Induce .,qiomer solves its own maximization problem in response.
the customers to |nd|V|duaIIy. choose the right consumistion \odel is that at the beginning of each day, the utility
and_chargmg sc_heduléai, r;) in response, as follows. _company and (the automated control agents of) the customers
Given the pricesp, we assume that each CUSIOMET jioratively compute the electricity prices(t), consumptions

chooses its own power demand and battery charging sched&gt@)' and charging schedules(t), for each periodt of the

(@i,71) = (qia(t),ri(1),V1,Ya € A;) SO as to maximize yav in advance. These decisions are then carried out for tha
its net benefit, the total utility from operating appliances da

at power levelsy; , minus the cost of battery operation and A.t k-th iteration:

T

electricity, i.e., each customérsolves: « The utility company collects forecasts of total demands
Customer i's objective (max own benefit): (Qi(t), Vvt) from all customers over a communication
network. It sets the prices to the marginal cost
max ; Ui.a(gi.a) — Di(ri) — thp(t)@:(t) (10) Pt =’ (Z Qf(t)> (12)
st (5) = (7) and boradcastgp*(t),vt) to all customers over the

communication network.

Note that an optimal solution of customersgiepends on . .
P P « Each customer updates its demang? and charging

the pricesp := (p(t),t € T) set by the utility company. We

denote it by(q; (p), 7i(p)) := (i.a(t; p), 74(t; p), Vt, Ya € Ay); scheduler? after receiving the updatedt, according to

similarly, we denote an optimal total power hy; = _ ;.o (gk

(Qilt: p))/) defined as in (3) but with optin?@li,a(p)?ng?i (p). Ta' (1) = ala®) +7 _aq,ﬁa(éT) - (t)> (12)
Definition 1: The pr_iceSp _ _an_d the customer demands FEEL() = rk(t) — (851(&1’;) _|_pk:(t))

(g,7) = (qi,r;, i) are in equilibrium if(¢, ) = (¢(p), r(p)). PP 1 118

i.e., a solution(g;(p),ri(p)) to (10) with pricesp that is (g ) = g ]

optimal to each customei is also optimal to the utility wherey > 0 is a constant stepsize, afid®: denotes

company, i.e., maximizes the welfare (4). projection onto the sef; specified by constraints (5)-

The following result follows from the welfare theorem. It 7.

implies that setting the price to be the marginal cost of powe \when ~ is small enough, the above algorithm converges
is optimal. [12].
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IV. DETAILED APPLIANCE MODELS DefineT}, == (1—a) T{%(0) + >,

In this section, we describe detailed models of electrite can further writel;7(¢) as
appliances commonly found in a household. We separate p
these appliances into four types, each type characteriged b T (t) =T, + Z(l — )" Bg;.0(7)
a utility function U; ,(gi,.) that models how much customer ’ et

1 values the con:_sumption vectof,, and_a_set_of c_onstrai_ntsWith equation (15), the constraint (14) becomes a linear
on the consumption vectat .. The description in this Section constraint on the load vectafi, := (g:..(t),¥): for any
elaborates on the utility functioris; ,(¢; .) and the constraint vt b

Abag; o < m; . inthe optimization problems defined in Section
.

(1—a)"7aTg (7).}

(15)

1,41
t

> (1= )7 Bgia(r) < T

T=1

com f,min < Tt +

,Q = “i,a

Tcomf

i,a

<tha + Z(l — ) "7 Bgi,q(7),

T=1

) is concave inl;" (t).

0 < gialt) < ql”

1) Type 1:The first type includes those appliances such ds
air conditioner and refrigerator which control the tempera
of customeri’s environment. (16)
We denote byA; ; the set of Type 1 appliances for customethe overall utility U; , (¢:..) in the form used in (4) and (10)
i. For each appliance € A;, T7;(t) and T%;*(t) denote can then be written in terms &f; ,(T;" (1), Tt ) ag
the temperatures at timeinside and outside the place that ’
the appliance is in charge of, arif , denotes the set of
timeslots that customeéractually cares about the temperature[.] ia(dia) = Z Uia )
For instance, for air conditionef]” (¢) is the temperature t€Tia
inside the housel 7w (t) is the temperature outside the house, (17)
and7; , is the set of timeslots when the resident is at homgshich is a concave function of the vectay;, since
Assume that, at each‘ time= 7; ., customet; attains a util- Uso(T0 (1), szmf '
ity Uia(Tia) := Uia(Ti5 (1), Tz’ffsz) when the temperature In addition, there is a maximum powef'** (t) that the ap-
is T;7%(t). The utility function is parameterized by a constantjiance can bear at each time, thus we have another constrain
T{;me which represents the most comfortable temperature fgh theg; ,:
the customer. We assume tHat, (7,7 (t)) is a continuously
differentiable, concave function dfi’i’(t). i (£), Vt
~ The inside temperature evolves according to the following 2y Type 2: The second category includes the appliances
linear dynamics: such as PHEV, dish washer, clothes washer. For these ap-
TZZ(t):TZZ(t —-1) +a(T{j§t(t) — TZZ’(t —1)) + Bgia(t) pliances, a customer only cares about whether the task is
(13) completed before a certain time. This means that the cumula-
tive power consumption by such an appliance must exceed a
where o and 3 are parameters that specify the thermahreshold by the deadline [5], [4], [3].
characteristics of the appliance and the environment irckvhi  \We denoted; » as the set of Type 2 appliances. For each
it operates. The second term in equation (13) models heat 4, ,, T; , is the set of times that the appliance can work.
transfer. The third term models the thermal efficiency of thegr instance, for PHEVT; , is the set of times that the vehicle

system;3 > 0 if appliancea is a heater ang < 0 if it is
a cooler. Here, we defin&;”(0) as the temperatur&;”.(T')

from the previous day. This formulation models the fact that

the current temperature depends on the current power draw
as well as the temperature in the previous timeslot. Thus the
current power consumption has an effect on future temper-

atures [1], [9], [2]. For each customeérand each appliance
a € A; 1, there is a range of temperature that custoirtakes

as comfortable, denoted by, 2", T o™/ ™) Thus we

i,a ’

have the following constraint

T < T < T T, (14)

We now express the constraints and the argument
the utility functions in terms of the load vectay; ,
(qi,(t), Vt). Using equation (13), we can writ&” (¢) in terms
of (gia(T), 7=1,...,%): /

t

(1) = (1-a)T{5(0)+ Y (1-a)"al(r)

T=1

in
i,a

t

+ Z(l — )" 77 Bg;a(7)

T=1

can be charged. For each custome&nda € A, 2, we have
the following constraints on the load vectgr,:

g (t) < qia(t) < gne(t), Ve Tia,
B ‘Qi,a(t) = 0, VtéT\’n,gL
Q" < Yier, dialt) < QT

where g/ (t) and ¢%2*(t) are the minimum and maximum
power load that the appliance can consume at tiraed 7;{1;”
and Q7** are the minimum and maximum total power draw
that the appliance requires. If we SEL"(t) = q'e(t) =0

for t € T\7;,4, We can rewrite these constraints as
(t) < Gia(t) < q77"(t), VEET

<

to "
(18)

QUi < Sier,, tialt) < QU

The overall utility that customei obtains from a Type-2
appliancez depends on the total power consumptiondoyver

1Tit_a represents the temperature at titié the appliancea doesn't exist.
It is determined by outside temperature and not controlledhe customer.

2We abuse notation to usE; . to denote two different functions; the
meaning should be clear from the context.



100

the whole day. Hence the utility function in the form used i
Section 'is:U; o(¢i,a) == Ui,a (3, ¢i,0(t)). We assume that
the utility function is a continuously differentiable, amave
function of ), ¢; o(2).
3) Type 3:The third category includes the appliances suc Y10 12 ¢ 15 18 Tzrg 2 2 2 4 6 8

as lighting that must be on for a certain period of time. A
customer cares about how much light they can get at eamhi 1. Outside Temperature over a day
time ¢t. We denote by4; 3 the set of Type-3 appliances and by
Ti.« the set of times that the appliance should work. For each
customer; anda € A; 3, we have the following constraintshouseholds of first type (indexed by = 1,2,3,4), there
on the load vectoy; ,: are residents staying at home for the whole day; for the

i i households of second type (indexed by 5,6,7,8), there

¢ (t) < gia(t) < g7 (1), Vt € Tia- (19) is no person staying at home during the day time (8am-
At each timet € 7; ., we assume that customeattains a util- 6pm). A day starts at 8am, i.ef, € 7 corresponds to the
ity Us.a(gi.0(t), t) from consuming powe; ,(¢) on appliance hour [7 + ¢ (mod 24),8 + ¢ (mod 24)]. Each household is
a. The overall utility is then; ,(¢i.o) := >, Ui.a(¢i.a(t), 1) assumed to have 6 appliances: air conditioner, PHEV, cdothe
Again, we assumé/; , is a continuously differentiable, con-Washer, lighting, entertainmefignd electric battery. The basic
cave function. parameters of each appliance used in simulation are shown as

4) Type 4:: The fourth category includes the appliancet®llows.

such as TV, video games, and computers that a customer useg Air conditioner: This appliance belongs to Type 1. The
for entertainment. For those appliances, the customerscare  outside temperature is shown in Figure 1. It captures
about two things: how much power they use at each time they  a typical summer day in Southern California. For each
want to use the appliance, and how much total power they resident, we assume that the comfortable temperature

90

Temperature

80

consume over the entire day. range is[70F, 79F], and the most comfortable temper-
We denote byA4,; 4 the set of Type-4 appliances and By, ature is randomly chosen frofi3F, 77F]. The thermal
the set of times that customercan use the appliance. For parametersy = 0.9 and 8 is chosen randomly from
instance, for TV,7; , is the set of times that the customer is [-0.011, —0.008]. For each household’s air conditioner,
able to watch TV. For each customeanda € A; 4, we have we assume thay™?* = 4000wh and ¢™" = Owh;
the following constraints on the load vectgr,: and the utility function takes the form &f; (T;(t)) :=
min mazx Ci,a — bi.a T%.a t) — Ticzm 21 where bi,a, and Ci,a are
q—i;n“,m(t) < Gialt) < dia (t)—’mii € Tia (20) positive bénétagn)ts. Wwe fu)rther assume that the residents
fa' S Ler, Go(t) < Qi will turn off the air conditioner when the
y go to sleép.
Whereq%‘n(t) and ¢]"*“(t) are the minimum and maximum The households of the first type care about the inside
power that the appliance can consume at each tim@/" temperature through the whole day; and the other house-
andQ{f;;’“ are the minimum and maximum total power that the holds care about the inside temperature during the time
customer demands for the appliance. For example, a customer Tio = {18,---,24,1,---,7}.

may have a favorite TV program that he wants to watch 2) PHEV: This appliance belongs to Type 2. We as-
everyday. With DVR, the customer can watch this program at sume that the available charging timef;, =

any time. However the total power demand from TV should ~ {18,---,24,1,---,7}, is the same for all houses.
at least be able to cover the favorite program. The storage capacity is chosen randomly from
Assume that customeérattains a utilityU; o (¢; «(t), t) from [5500wh, 6000wh]; and the minimum total charging re-
consuming powey; ,(t) on appliance: € A; 4 at timet. The quirement is chosen randomly frop800wh, 5100wh].
time dependent utility function models the fact that thédest The minimum and maximum charging rates ave and

would get different benefits from consuming the same amount ~ 2000w. The utility function takes the form df; ,(Q) =

of power at different times. Take watching the favorite TV bi.a®@ + ¢i.q, Whereb; , andc¢; , are positive constants.
program as an example. Though the resident is able to watcl3) Washer: This appliance belongs to Type 2. For the
it at any time, he may enjoy the program at different levels at  households of the first type, the available working time

different times. is the whole day; for the other households, the avail-
able working time is7;, = {18,---,24,1,--- ,7}.
V. NUMERICAL EXPERIMENTS The minimum and maximum total power demands are

chosen from[1400wh, 1600wh] and [2000wh, 2500wh]
respectively. The minimum and maximum working rate
are Ow and 1500w respectively. The utility function

In this section, we provide numerical examples to comple-
ment the analysis in the previous sections.

A. Simulation setup 3Here we aggregate different entertainment devices suchvasril PC

We consider a simple system with 8 households in off&ectively as one “entertainment” device. _ _
Notice that the outside temperature during 23pm-8am in font Cali-

neighborhood  that joir_w . in the demand response SYSteffnia is comfortable. It is common that customers turn efcainditioner in
The households are divided into two types evenly. For thie mid-night.



takes the form ofU; ,(Q) = Q + cia, Wherec; 4 is

a positive constant. ZZZD
4) Lighting: This appliance belongs to Type 3;, = 009
{18,---,23}, and the minimum and maximum working £ s
power requirements ar200w and 800w respectively. £ 5000
The utility function takes the form ot; ,(gi . (t)) = %zzzz —ne ]
Cia—(bia— %@),1,5’ whereb; , andc; , are positive 5ol —r
constants. moof ]
5) Entertainment: This appliance belongs to Type 4. Fi % 10 1z 1 16 18 2 22 2 2 4 6 &
the households of the first typg; , = {12,---,23}, e
Q{"** = 3500wh, and Q""" = 1200wh; for the other Fig. 2. Total electricity demand under the real-time pcitemand response
households;7; , = {18,---,24} , Q"% = 2000wh, scheme without battery
and Q7" = 500wh. The minimum and maximum
working rate arddw and400w respectively. The utility
function takes the form ot/; ,(q; o (t)) = ¢i.a — (bio —
2.2(0)=15 \whereb; , andc; , are positive constants. . e 8“"
6) Battery: The storage capacity is chosen random 2., L O
from [5500wh, 6500wh] and the maximum charg- e
ing/discharging rates are botl300w. We sety; = 0.5, & Q‘PJ_DI e
and the cost function takes the following form: S Ef%ﬂ ] 20 r_JEH

. . 0
Dz (Tz) B 10 12 14 16 18 20 22 24 2 4 6 8 8 10 12 14 16 18 20 22 24 2 4 6 8
Time Time

T-1
= (m Tuer i()? = m 15 1t | -~ | |
] 9 Fig. 3. Electricity demand response for two typical housghof different
+ 13 g (min(b;(t) — 6B;,0))" + ci,b) types without battery. The left panel shows the electriagnallocation for
the household of the first type. The right panel shows thetrédeenergy
where M, N2, N3, 0 and cip are positive constants. allocation for the household of the second type.

The first term captures the damaging effect of fast

charging and discharging; the second term penalizes
charging/discharging cyclésthe third term captures the

fact that deep discharge can damage the battery. We

§=10.25

On the supply side, we assume that the electricity cc s0007

function is a smooth piecewise quadratic function [13],,i.e

a1Q* +b1Q + ay; 0<Q<
c2Q? + boQ + as; Q1 <Q <L Qe

4000

3000

2000~

Energy Demand (wh)

1000

c@) =

-1000~

emQ® +bmQ + am; Q-1 < Q =

wherec,, > ¢p_1 > ... > ¢ > 0. Time

Fig. 4. Total electricity demand under the real-time pigcdemand response
scheme with battery

Let us first see the performance of our proposed demand
response scheme with real-time pricing, without and with
battery.

Figure 2 shows the total electricity demand under the re: .,
time pricing demand response scheme without battery; a £
Figure 3 shows the corresponding electricity allocatianfam S
typical households of different types. We see that differe Q‘PJ_DI
appliances are coordinated indirectly by real-time pgciso | ET%ﬂ e
as to flatten the total power demand at differenttimesas mv = = .-
as possible. R R

B. Real-time pricing demand response
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2007 o
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8
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Energy Demand (wh)

5If r(t) and (¢t + 1) have different signs, then there will be a cost. AsFig. 5. Electricity demand response for two typical housghef different
long asns is smaller thary, the cost function is a positive convex function.types with battery. The left panel shows the electric eneitpcation for the
The second item can also be seen as a correction term to theefirs household of the first type. The right panel shows the eteetrergy allocation
5We assume that the batteries are lead-acid type battethesr than NiCd for the household of the second type.
batteries.
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Figure 4 shows the total electricity demand under the re: e
time pricing demand response scheme with battery; and &ig .
5 shows the corresponding electricity allocation for twpitgal
households of different types. Those figures show the vdiue
battery for demand response: it does not only reduce the p¢ _,:Eig_
load but also helps to further flatten the total power demau

O.SEZF' '—% 4
at different times. e ‘

8 10 12 14 16 18 20 22 24 2 4 6 8
Time

Energy Demand (wh)
-

C. Comparisons among different demand response schemEgi. 6. Electricity demand response under different sciseme

In order to evaluate the performance of our proposed TABLE |
demand response scheme, we consider 3 other schemes. In
the first scheme the customer is not responsive to any price

DEMAND RESPONSE WITHOUTBATTERY

or cost, just wants to live a comfortable lifestyle; and ie th No Flat Flat Real- Real-

second and third ones, the customer responds to certain |flat Demand | Pricing | Pricing | tme | Time
. Re- (Scheme | (Scheme | Pricing; Pricing;

price. sponse | 1) 2) no with

: ; ; Battery Battery
It
1) No demand responseThe customers just allocate thei Coad 03587 04495 04577 07146 08496

energy usage according to their own preference withQugactor
paying any attention to the price, i.e., they just optimizePeak De-| 18.8kwh | 14.7kwh | 13 kwh | 8.76 kwh | 7.29 kwh
their utility without caring about Fhew pg}/ment. Fo ?oatgldDe- 162 kwh | 158 kwh | 153 kwh | 150 kwh | 148 kwh
example, the customer sets the air conditioner to keeganqg
the temperature to the most comfortable level all theGeneration $64.41 | $45.49 | $41.80 | $32.82 | $31.50
time; charges PHEV, washes clothes and watches T\£ost
at the favorite times. The electricity demand over a day;c,’d;ar'nent $137.40 | $54.59 | $58.56 | $57.42 | $55.69
under this scheme is shown by the blue plot in FigureCustomerd $212.41 | $201.72 | $200.14 | $198.82 | $198.82
6 Utility

2) Flat price scheme 1:In this scheme, the customer ig ﬁ“swme“' $75.01 | $147.14 | $141.57 | $141.40 | $143.13
(1+2) 3, .7 C(Q(1),1) et

charged a flat pricg, such thap = S Utility
te =
with {Q(t)},., the best response to such a price froT\?vf”:lf'g're $148.00 | $156.24 | $158.33 | $166.00 | $167.32

the customers. To find such a price, we run iterations
between the utlllty company and customers. At eaChaThe price at each time slot is set as the real-time marginang¢ion cost.

iterationk = 1,2, - - -, the utility company set the price Pwhen there is a battery, a customer’ utility is defined as tamefits the
aspy = A+A) > ier C(?k(t)i) and then the customerscustomer gets from electric appliances minus the battesy. co
2oieT Qr(t) cCustomers’ net utility is defined as customers’ utility nmsnpayment.

will shape their demand in response to such a flat price.

eventually,p, will converge to a fixed point, which is

the flat price we neef.The electricity demand over a ) _ o

day under this scheme is shown by the magenta plot inTable I summarizes the differences among the three pricing

Figure 6. schemes. We see that the real-time pricing scheme can ggcrea
3) Flat price scheme 2:In this scheme we use the in-the qud factor greatly and save a !arge amount of generation

formation obtained from our proposed real-time pricin@r?St without hurting customers’ utility; and the integeatiof

demand response scheme to set a flat prid&fe collect ¢ e_batte_ry can furt_her increase the load factor and regerar

the price{p(t)},., and total power demang)(t)},., Savings In generation cost.

information under real time pricing scheme and then

set the flat price ap = %T’T%. The electricity
demand over a day under this scheme is shown by the Battery with different cost

black plot in Figure 6. i . ) L
Figure 6 also shows the electricity demand response undepne (.)f the ghal_l[enges in the m'gegratlon of batery is its
the real-time pricing scheme with and without battery. conomic (m)wablllty because of high battery cost. Inerd
see that the real-time pricing demand response scheme;Oin;?ggr;htir'gpggér?;?oastt%%hcﬁisgthonmc:fjmgzg ngvpgng ,k;/;e
very effective in shaping the demand: not only the peak lo oosing different scaling factors (10, 1 and 0.1) for thidsg

is reduced greatly, but also the variation in power dema ; L . ) -
decreases greatly; and with the integration of the battagy, cost in the objective func.t|on. .F!gure 7 shows _the eIect;pm
mand under the real-time pricing scheme with batteries of

eak load and the variation in power demand will be reducgI . :
?urther b d(liferent costs. Table Il summarizes the differences among

those different scenarios. We see that the economic \iabili

“In general, such a price may not exist and the iterative phaeedescribed th.e battery is |mporta_nt, and more economically viableegtt
may not converge. will reap more benefits from demand response.



9001

8000+

7000+

T T T T
T T T T
_ o7 4
e ro—— ]
—— Without Battery i 3 0.66 e
——— With battery (high cost) £ el i
—— With battery (mild cost) El
—— With battery, (low cost) i S 058 4
054 4
L .

10 15
Number of customers

6000

Energy Demand (wh)

@
2
S
S

N
38
S

. . . . . . . . . I .
] 10 12 14 6 18 20 22 24 2 4 6 8
Time

Peak Demand
per Household (wh)

Fig. 7. Electricity demand response with battery at diffiéreosts 0 E Nﬂ‘)mbe, ofmmmifs % ®

NN
ox

TABLE Il
DEMAND RESPONSE WITHBATTERY

Total Demand
per Household (wh)

©
T

No Bat- | Battery Battery Battery L6 L 5 = = 2
tery (hlgh- (mlld' (|0W- Number of customers
cost) cost) cost) . o ) )
Coad Facor | 07146 | 0.090 | Omise [ 09055 | T3, Fectiey demand fesponse wiout patery ffesint pover
Peak 8.76 kwh | 8.33 kwh | 7.29 kwh | 6.84 kwh :
Demand
Total 150 kwh | 148 kwh | 148 kwh | 149 kwh ) . . o )
Demand with social optimality, i.e., under such prices, when these>
ge”terat'on $32.82 | $3L.72 | $31.50 | $31.70 holds selfishly optimize their own benefits, they automélgica
oS .. . -
Total 5740 $56.35 $55.69 $55.99 also maximize the s_oqal welfare._ The utility company can
Payment thus use dynamic pricing to coordinate demand responses to
SqlstozrperS’ $198.82 | $198.55 | $198.82 | $199.42 the benefit of the overall system. We propose a distributed
tl |ty . . s
Customeis T STATA0 [ §14292 | $14313 [ S14343 algorithm fo.r the ytlllty company and the customers to Jky!nt
Net Utility® compute this optimal prices and demand schedules. Finally,
Social Wel- | $166.00 | $166.84 | $167.32 | $167.69 we present simulation results that illustrate severakésiing
fare properties of the proposed scheme.

aA customer’ utility is defined as the benefits the customes §em electric
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