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Exact Convex Relaxation of Optimal
Power Flow in Radial Networks

Lingwen Gan, Na Li, Member, IEEE, Ufuk Topcu, Member, IEEE, and Steven H. Low, Fellow, IEEE

Abstract—The optimal power flow (OPF) problem determines
a network operating point that minimizes a certain objective such
as generation cost or power loss. It is nonconvex. We prove that a
global optimum of OPF can be obtained by solving a second-order
cone program, under a mild condition after shrinking the OPF
feasible set slightly, for radial power networks. The condition can
be checked a priori, and holds for the IEEE 13, 34, 37, 123-bus
networks and two real-world networks.

Index Terms—Optimal power flow (OPF).

I. INTRODUCTION

THE optimal power flow (OPF) problem determines a
network operating point that minimizes a certain objective

such as generation cost or power loss. It has been one of
the fundamental problems in power system operation since
1962. As distributed generation (e.g., photovoltaic panels) and
controllable loads (e.g., electric vehicles) proliferate, OPF prob-
lems for distribution networks become increasingly important.
To use controllable loads to integrate volatile renewable gener-
ation, solving the OPF problem in real-time will be inevitable.
Power distribution networks are usually radial (have a tree
topology).

The OPF problem is difficult because power flow is governed
by nonlinear Kirchhoff’s laws. There are three ways to deal
with this challenge: 1) approximate the power flow equations;
2) look for a local optimum of the OPF problem; and 3) con-
vexify the constraints imposed by the Kirchhoff’s laws. After
a brief discussion of the first two approaches, we will focus on
the third. See extensive surveys in e.g., [1]–[12].

Power flow equations can be approximated by linear equa-
tions known as the dc power flow equations [13]–[15] if
1) power losses on the lines are small; 2) voltages are close to
their nominal values; and 3) voltage angle differences between
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adjacent buses are small. With the dc approximation, the OPF
problem, called dc OPF, reduces to a linear program. For
transmission networks, these three assumptions are reasonable
and dc OPF is widely used in practice. Dc OPF, however, has
three limitations. First, it is not applicable for applications such
as power routing (e.g., [16]) and volt/var control (e.g., [17])
since it assumes fixed voltage magnitudes and ignores reactive
powers. Second, a solution of the dc OPF may not be feasible
(may not satisfy the nonlinear power flow equations). In this
case an operator typically tightens some constraints in dc OPF
and solves again. This may not only reduce efficiency but also
relies on heuristics that are hard to scale to larger systems or
faster control in the future. Finally, dc approximation is unsuit-
able for distribution systems where loss is much higher than in
transmission systems, voltages can fluctuate significantly, and
reactive powers are used to stabilize voltages [17]. See [18] for
a more accurate power flow linearization that addresses these
shortcomings of the dc approximation.

Many nonlinear algorithms that seek a local optimum of
the OPF problem have also been developed to avoid these
shortcomings. Representative algorithms include successive
linear/quadratic programming [19], trust-region based methods
[20], [21], Lagrangian Newton method [22], and interior-point
methods [23]–[25]. Some of them, especially those based on
Newton-Ralphson, are quite successful empirically. However,
when they converge, these algorithms converge to a local mini-
mum without assurance on the suboptimality gap.

In this paper we focus on the convexification approach (see
[26], [27] for a tutorial). Solving OPF through semidefinite
relaxation is first proposed in [28] as a second-order cone pro-
gram (SOCP) for radial networks and in [29] as a semidefinite
program (SDP) for general networks in a bus injection model.
It is first proposed in [30], [31] as an SOCP for radial networks
in the branch flow model of [32], [33]. While these convex
relaxations have been illustrated numerically in [28] and [29],
whether or when they are exact is first studied in [34] (i.e.,
when an optimal solution of the original OPF problem can be
recovered from every optimal solution of an SDP relaxation).
Exploiting graph sparsity to simplify the SDP relaxation of
OPF is first proposed in [35], [36] and analyzed in [37]. These
relaxations are equivalent for radial networks in the sense that
there is a bijective map between their feasible sets [38]. The
SOCP relaxation, however, has a much lower computational
complexity. We will hence focus on the SOCP relaxation in this
paper.

Solving OPF through convex relaxation offers several advan-
tages. It provides the ability to check if a solution is globally
optimal. If it is not, the solution provides a lower bound on the
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minimum cost and hence a bound on how far any feasible solu-
tion is from optimality. Unlike approximations, if a relaxation
is infeasible, it is a certificate that the original OPF is infeasible.

Convex relaxations may not be exact [39]–[41]. For radial
networks, three types of sufficient conditions have been devel-
oped in the literature that guarantee their exactness. They are
not necessary in general and have implications on allowable
power injections, voltage magnitudes, or voltage angles:

A) Power injections: These conditions require that not both
constraints on real and reactive power injections be bind-
ing at both ends of a line [30], [31], [42]–[44].

B) Voltage angles: These conditions require that the voltage
angles across each line be sufficiently close [45]. This is
needed also for stability reasons.

C) Voltages magnitudes: These conditions require that the
upper bounds on voltage magnitudes not be binding [46],
[47]. They can be enforced through affine constraints on
power injections. This paper generalizes these results.

Summary of Contributions: The goal of this paper is to
show that after modifying the OPF problem for radial networks
slightly, the corresponding SOCP relaxation is exact under a
mild condition that can be checked a priori. In particular,
contributions of this paper are threefold.

First, we prove in Theorem 1 that if voltage upper bounds do
not bind at optimality, then the SOCP relaxation is exact under
a mild condition. The condition can be checked a priori and
holds for the IEEE 13, 34, 37, 123-bus networks and two real-
world networks. The condition has a physical interpretation that
all upstream reverse power flows increase if the power loss on
a line is reduced.

Second, in Section IV we modify the OPF problem by limit-
ing power injections to a region where voltage upper bounds
do not bind so that the SOCP relaxation is exact under the
aforementioned condition. We illustrate that this only elimi-
nates power injections from the original feasible set that are
close to voltage upper bounds. Examples exist where the SOCP
relaxation is not exact without this modification.

Third, we prove in Theorem 4 that the result in this paper
unifies and generalizes the results in [46], [47].

The rest of this paper is organized as follows. The OPF prob-
lem and the SOCP relaxation are introduced in Section II, and a
sufficient condition for exactness is provided in Section III. The
condition consists of two parts, C1 and C2. Since C2 cannot
be checked a priori, we propose in Section IV a modified
OPF problem that always satisfies C2 and therefore its SOCP
relaxation is exact under C1. We compare C1 with prior works
in Section V and show that C1 holds with large margin for a
number of test networks in Section VI.

II. THE OPTIMAL POWER FLOW PROBLEM

A. Power Flow Model

A distribution network is composed of buses and lines con-
necting these buses, and is usually radial. The root of the
network is a substation bus that connects to the transmission
network. It has a fixed voltage and redistributes the bulk power
it receives from the transmission network to other buses. Index

Fig. 1. Some of the notations.

the substation bus by 0 and the other buses by 1, . . . , n. Let
N := {0, . . . , n} denote the collection of all buses and define
N+ := N \ {0}. Each line connects an ordered pair (i, j) of
buses where bus j lies on the unique path from bus i to bus 0.
Let E denote the collection of all lines, and abbreviate (i, j) ∈ E
by i → j whenever convenient.

For each bus i ∈ N , let vi denote the square of the magnitude
of its complex voltage, e.g., if the voltage is 1.05∠120◦ per
unit, then vi = 1.052. The substation voltage v0 is fixed and
given. Let si = pi + iqi denote the power injection of bus i
where pi and qi denote the real and reactive power injections,
respectively. Let Pi denote the unique path from bus i to bus 0.
Since the network is radial, the path Pi is well-defined. For
each line (i, j) ∈ E , let zij = rij + ixij denote its impedance.
Let �ij denote the square of the magnitude of the complex
current from bus i to bus j, e.g., if the current is 0.5∠10◦,
then �ij = 0.52. Let Sij = Pij + iQij denote the sending-end
power flow from bus i to bus j where Pij and Qij denote
the real and reactive power flow respectively. Some of the
notations are summarized in Fig. 1. We use a letter without
subscripts to denote a vector of the corresponding quantities,
e.g., v = (vi)i∈N+ , � = (�ij)(i,j)∈E . Note that subscript 0 is not
included in nodal quantities such as v and s. For a complex
number a ∈ C, let ā denote the conjugate of a.

Given the network (N , E), the impedance z, and the substa-
tion voltage v0, the other variables (s, S, v, �, s0) are described
by the branch flow model for radial networks [32], [33]

Sij = si +
∑

h:h→i

(Shi − zhi�hi), ∀(i, j) ∈ E (1a)

0 = s0 +
∑

h:h→0

(Sh0 − zh0�h0) (1b)

vi − vj = 2Re(z̄ijSij)− |zij |2�ij , ∀(i, j) ∈ E (1c)

�ij =
|Sij |2
vi

, ∀(i, j) ∈ E . (1d)

B. The OPF Problem

We consider the following controllable devices in a distri-
bution network: distributed generators, inverters, controllable
loads such as electric vehicles and smart appliances, and
shunt capacitors. For application examples, in volt/var con-
trol, reactive power injection of inverters and shunt capacitors
are controlled to regulate voltages; in demand response, real
power consumption of controllable loads is reduced or shifted.
Mathematically, power injection s is the control variable, after
specifying which the other variables (S, v, �, s0) are determined
by the power flow laws in (1).
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The power injection si of a bus i ∈ N+ is constrained to be
in a pre-specified set Si, i.e.

si ∈ Si, i ∈ N+. (2)

The set Si for some controllable devices are:

• If si represents a shunt capacitor with nameplate capacity
qi, then Si = {s ∈ C | Re(s) = 0, Im(s) = 0 or qi}. Note
that Si is nonconvex and disconnected in this case.

• If si represents a solar panel with generation capacity
pi, that is connected to the grid through an inverter with
nameplate capacity si, then Si = {s ∈ C | 0 ≤ Re(s) ≤
pi, |s| ≤ si}.

• If si represents a controllable load with constant power
factor η, whose real power consumption can vary continu-
ously from −pi to −p

i
(here p

i
≤ pi ≤ 0), then Si = {s ∈

C | p
i
≤ Re(s) ≤ pi, Im(s) =

√
1− η2Re(s)/η}.

Note that si can represent the aggregate power injection of
multiple such devices with an appropriate Si, and that the set
Si is not necessarily convex or connected.

An important goal of control is to regulate the voltages to lie
within pre-specified lower and upper bounds vi and vi, i.e.,

vi ≤ vi ≤ vi, i ∈ N+. (3)

For example, if voltages must not deviate by more than 5%
from their nominal values, then 0.952 ≤ vi ≤ 1.052 per unit.
We consider the control objective

C(s, s0) =
∑
i∈N

fi (Re(si)) (4)

where fi : R → R denotes the generation cost at bus i for
i ∈ N . If fi(x) = x for i ∈ N , then C is the total power loss
on the network.

The OPF problem seeks to minimize the generation cost (4),
subject to power flow constraints (1), power injection con-
straints (2), and voltage constraints (3)

OPF : min
∑
i∈N

fi (Re(si))

over s, S, v, �, s0

s.t. Sij=si+
∑

h:h→i

(Shi− zhi�hi), ∀(i, j)∈E (5a)

0 = s0 +
∑

h:h→0

(Sh0 − zh0�h0) (5b)

vi−vj=2Re(z̄ijSij)−|zij |2�ij , ∀(i,j)∈E (5c)

�ij =
|Sij |2
vi

, ∀(i, j) ∈ E (5d)

si ∈ Si, i ∈ N+ (5e)

vi ≤ vi ≤ vi, i ∈ N+. (5f)

The following assumptions are made throughout this paper.
A1 The network (N , E) is a tree. Distribution networks are

usually radial.
A2 The substation voltage v0 is fixed and given. In practice, v0

can be modified several times a day, and therefore can be
considered as a given constant at the timescale of OPF.

A3 Line resistances and reactances are strictly positive, i.e.,
rij > 0 and xij > 0 for (i, j) ∈ E . This holds in practice
because lines are passive (consume power) and inductive.

A4 Voltage lower bounds are strictly positive, i.e., vi > 0 for
i ∈ N+. In practice, vi is slightly below 1 per unit.

The equality constraint (5d) is nonconvex, and one can relax
it to inequality constraints to obtain the following second-order
cone programming (SOCP) relaxation [31]:

SOCP : min
∑
i∈N

fi (Re(si))

over s, S, v, �, s0

s.t. (5a)–(5c), (5e)–(5f)

�ij ≥
|Sij |2
vi

, ∀(i, j) ∈ E . (6)

Note that SOCP is not necessarily convex, since we allow fi to
be nonconvex and Si to be nonconvex. Nonetheless, we call it
SOCP for brevity.

If an optimal SOCP solution w = (s, S, v, �, s0) is feasible
for OPF, i.e., w satisfies (5d), then w is a global optimum of
OPF. This motivates the following definition.

Definition 1: SOCP is exact if every of its optimal solutions
satisfies (5d).

III. A SUFFICIENT CONDITION

We now provide a sufficient condition that ensures SOCP is
exact. It motivates a modified OPF problem in Section IV.

A. Statement of the Condition

We start with introducing the notations that will be used in
the statement of the condition. One can ignore the � terms in
(1a) and (1c) to obtain the Linear DistFlow Model [32], [33]

Sij = si +
∑

h:h→i

Shi, ∀(i, j) ∈ E

vi − vj =2Re(z̄ijSij), ∀(i, j) ∈ E .

Let (Ŝ, v̂) denote the solution of the Linear DistFlow model,
then

Ŝij(s) =
∑

h:i∈Ph

sh, ∀(i, j) ∈ E

v̂i(s) := v0 + 2
∑

(j,k)∈Pi

Re
(
z̄jkŜjk(s)

)
, ∀i ∈ N

as in Fig. 2. Physically, Ŝij(s) denotes the sum of power
injections sh towards bus 0 that go through line (i, j). Note
that (Ŝ(s), v̂(s)) is affine in s, and equals (S, v) if and only if
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Fig. 2. Illustration of Ŝij and v̂i. The shaded region is downstream of bus i,
and contains the buses {h : i ∈ Ph}. Quantity Ŝij(s) is defined to be the
sum of bus injections in the shaded region. The dashed lines constitute the
path Pi from bus i to bus 0. Quantity v̂i(s) is defined as v0 plus the terms
2Re(z̄jkŜjk(s)) over the dashed path.

Fig. 3. We assume that Si lies in the left bottom corner of (pi, qi), but do not
assume that Si is convex or connected.

line loss zij�ij is 0 for (i, j) ∈ E . For two complex numbers
a, b ∈ C, let a ≤ b denote Re(a) ≤ Re(b) and Im(a) ≤ Im(b).
For two vectors a, b of the same dimension, let a ≤ b denote
componentwise inequality. Define <, >, and ≥ similarly.

Lemma 1: If (s, S, v, �, s0) satisfies (1a)–(1c) and � ≥ 0
componentwise, then S ≤ Ŝ(s) and v ≤ v̂(s).

Lemma 1 implies that v̂(s) and Ŝ(s) provide upper bounds
on v and S. It is proved in Appendix A. Let P̂ (s) and Q̂(s)
denote the real and imaginary parts of Ŝ(s) respectively. Then

P̂ij(s = p+ iq) = P̂ij(p) =
∑

h:i∈Ph

ph, (i, j) ∈ E

Q̂ij(s = p+ iq) = Q̂ij(q) =
∑

h:i∈Ph

qh, (i, j) ∈ E .

Assume that there exist pi and qi such that

Si ⊆ {s ∈ C|Re(s) ≤ pi, Im(s) ≤ qi}

for i ∈ N+ as in Fig. 3, i.e., Re(si) and Im(si) are upper
bounded by pi and qi respectively. Define a+ := max{a, 0} for
a ∈ R. Let I := diag(1, 1) denote the 2 × 2 identity matrix, and
define

uij :=

(
rij
xij

)
, Aij := I − 2

vi

(
rij
xij

)(
P̂+
ij (p) Q̂+

ij(q)
)

for (i, j) ∈ E . For each i ∈ N+, (i, j1) ∈ E and (i, j2) ∈ E
implies j1 = j2, and therefore we can abbreviate uij and Aij

by ui and Ai, respectively, without ambiguity.

Fig. 4. The shaded region denotes the collection L of leaf buses, and the path
Pl of a leaf bus l ∈ L is illustrated by a dashed line.

Fig. 5. A 3-bus linear network.

Further, let L := {l ∈ N | 	 ∃k ∈ N such that k → l} denote
the collection of leaf buses in the network. For a leaf bus l ∈ L,
let nl + 1 denote the number of buses on path Pl, and suppose

Pl = {lnl
→ lnl−1 → . . . → l1 → l0}

with lnl
= l and l0 = 0 as in Fig. 4. Let

Svolt :=
{
s ∈ C

n|v̂i(s) ≤ vi for i ∈ N+
}

denote the power injection region where v̂(s) is upper bounded
by v. Since v ≤ v̂(s) (Lemma 1), the set Svolt is a power
injection region where voltage upper bounds do not bind.

The following theorem provides a sufficient condition that
guarantees the exactness of SOCP.

Theorem 1: Assume that f0 is strictly increasing, and
that there exist pi and qi such that Si ⊆ {s ∈ C | Re(s) ≤
pi, Im(s) ≤ qi} for i ∈ N+. Then SOCP is exact if the follow-
ing conditions hold:

C1 AlsAls+1
· · ·Alt−1

ult > 0 for any l ∈ L and any s, t such
that 1 ≤ s ≤ t ≤ nl;

C2 every optimal SOCP solution w = (s, S, v, �, s0) satisfies
s ∈ Svolt.

Theorem 1 implies that if C2 holds, i.e., optimal power
injections lie in the region Svolt where voltage upper bounds
do not bind, then SOCP is exact under C1. C2 depends on
SOCP solutions and cannot be checked a priori. This drawback
motivates us to modify OPF such that C2 always holds and
therefore the corresponding SOCP is exact under C1, as will
be discussed in Section IV.

We illustrate the proof idea of Theorem 1 via a 3-bus linear
network in Fig. 5. The proof for general radial networks is
provided in Appendix B. Assume C1 and C2 hold. If SOCP
is not exact, then there exists an optimal SOCP solution w =
(s, S, v, �, s0) that violates (5d). We will construct another
feasible point w′ = (s′, S ′, v′, �′, s′0) of SOCP that has a smaller
objective value than w, contradicting the optimality of w and
implying SOCP is exact.
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Fig. 6. In the above linear network, L = {n} and Pn = {n → n− 1 →
· · · → 1 → 0}. C1 requires that given any highlighted segment (s− 1, t)
where 1 ≤ s ≤ t ≤ n, the multiplication of A over (s− 1, t− 1) times ut

is strictly positive (componentwise).

There are two ways (5d) gets violated: 1) (5d) is violated on
line (1,0); or 2) (5d) is satisfied on line (1,0) but violated on
line (2,1). To illustrate the proof idea, we focus on the second
case, i.e., the case where �10 = |S10|2/v1 and �21 > |S21|2/v2.
In this case, the construction of w′ is

Initialization : s′ = s, S ′
21 = S21

Forward sweep : �′21 = |S ′
21|2/v2

S ′
10 = S ′

21 − z21�
′
21 + s′1

�′10 = |S ′
10|2/v1

S ′
0,−1 = S ′

10 − z10�
′
10

Backward sweep : v′1=v0+2Re(z̄10S
′
10)−|z10|2�′10

v′2=v′1+2Re(z̄21S
′
21)−|z21|2�′21

where S ′
0,−1 = −s′0. The construction consists of three steps:

S1 In the initialization step, s′ and S ′
21 are initialized as the

corresponding values in w.
S2 In the forward sweep step, �′k,k−1 and S ′

k−1,k−2 are recur-
sively constructed for k = 2,1 by alternatively applying
(5d) (with v′ replaced by v) and (5a)/(5b). This recursive
construction updates �′ and S ′ alternatively along the path
P2 from bus 2 to bus 0, and is therefore called a forward
sweep.

S3 In the backward sweep step, v′k is recursively constructed
for k = 1,2 by applying (5c). This recursive construction
updates v′ along the negative direction of P2 from bus 0 to
bus 2, and is therefore called a backward sweep.

One can show that w′ is feasible for SOCP and has a smaller
objective value than w. This contradicts the optimality of w,
and therefore SOCP is exact.

Remark 1: Theorem 1 still holds if there is an additional
power injection constraint s ∈ S in OPF, where S can be an
arbitrary set. This is because we set s′ = s in the construction
of w′, and therefore s ∈ S implies s′ ∈ S . Hence, an additional
constraint s ∈ S does not affect the fact that w′ is feasible for
SOCP and has a smaller objective value than w.

B. Interpretation of C1

We illustrate C1 through a linear network as in Fig. 6. The
collection of leaf buses is a singleton L = {n}, and the path
from the only leaf bus n to bus 0 is Pn = {n → n− 1 → · · · →
1 → 0}. Then, C1 takes the form

AsAs+1 · · ·At−1ut > 0, 1 ≤ s ≤ t ≤ n.

That is, given any network segment (s− 1, t) where 1 ≤ s ≤
t ≤ n, the multiplication AsAs+1 · · ·At−1 of A over the seg-
ment (s− 1, t− 1) times ut is strictly positive.

C1 only depends on SOCP parameters (r, x, p, q, v). It can
be checked a priori and efficiently since A and u are simple
functions of (r, x, p, q, v) that can be computed in O(n) time
and there are no more than n(n+ 1)/2 inequalities in C1.

Proposition 1: If (p, q) ≤ (p′, q′) and C1 holds for
(r, x, p′, q′, v), then C1 also holds for (r, x, p, q, v).

Proposition 1 implies that if C1 holds for a set of power
injections, then C1 also holds for smaller power injections. It
is proved in Appendix C.

Proposition 2: If (p, q) ≤ 0, then C1 holds.
Proposition 2 implies that if every bus only consumes real

and reactive power, then C1 holds. This is because when
(p, q) ≤ 0, the quantities P̂ij(p) ≤ 0, Q̂ij(q) ≤ 0 for (i, j) ∈ E .
It follows that Ai = I for i ∈ N+. Hence, Als · · ·Alt−1

ult =
ult > 0 for any l ∈ L and any s, t such that 1 ≤ s ≤ t ≤ nl.

For practical parameter ranges of (r, x, p, q, v), line resis-
tance and reactance rij , xij � 1 per unit for (i, j) ∈ E , line
flows P̂ij(p), Q̂ij(q) are on the order of 1 per unit for (i, j) ∈ E ,
and voltage lower bound vi ≈ 1 per unit for i ∈ N+. Hence, Ai

is close to I for i ∈ N+, and therefore C1 is likely to hold. As
will be seen in Section VI, C1 holds for several test networks,
including those with big (p, q) (high penetration of distributed
generation).

C1 has a physical interpretation. Recall that Sk,k−1 denotes
the reverse power flow on line (k, k − 1) for k = 1, . . . , n
and introduce S0,−1 := −s0 for convenience. If the power loss
on a line is reduced, it is natural that all upstream reverse
power flows will increase. More specifically, the power loss
on line (t, t− 1) where t ∈ {1, 2, . . . , n} is reduced if the
current �t,t−1 is reduced by −d�t,t−1 > 0. When power loss
gets smaller, reverse power flow Ss−1,s−2 is likely to increase,
i.e., dSs−1,s−2 > 0, for s = 1, 2, . . . , t.

Let dSs−1,s−2 = dPs−1,s−2 + idQs−1,s−2 > 0 for s =
1, . . . , t. It can be verified that (dPt−1,t−2 dQt−1,t−2)

T =
−utd�t,t−1, and one can compute from (1) the Jacobian matrix

Ak :=

( ∂Pk−1,k−2

∂Pk,k−1

∂Pk−1,k−2

∂Qk,k−1

∂Qk−1,k−2

∂Pk,k−1

∂Qk−1,k−2

∂Qk,k−1

)

= I − 2

vk

(
rk,k−1

xk,k−1

)
(Pk,k−1 Qk,k−1)

for k = 1, . . . , n. Therefore

(dPs−1,s−2 dQs−1,s−2)
T = −AsAs+1 · · ·At−1utd�t,t−1

for s = 1, . . . , t. Then, dSs−1,s−2 > 0 implies

AsAs+1 · · ·At−1ut > 0 (7)

for s = 1, 2, . . . , t. Note that Ak is obtained by replacing
(P,Q, v) in Ak by (P̂+(p), Q̂+(q), v) (so that Ak only depends
on SOCP parameters), and then (7) becomes C1.
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IV. A MODIFIED OPF PROBLEM

The condition C2 in Theorem 1 depends on SOCP solutions
and cannot be checked a priori. It can however be enforced by
the additional constraint

s ∈ Svolt (8)

on OPF. Condition (8) is equivalent to n affine constraints on s,
v̂i(s) ≤ vi for i ∈ N+. Since vi ≤ v̂i(s) (Lemma 1), the con-
straints vi ≤ vi in (5f) become redundant after imposing (8).
To summarize, the modified OPF problem is

OPF-m : min
∑
i∈N

fi (Re(si))

over s, S, v, �, s0

s.t. (5a)–(5e)

vi ≤ vi, v̂i(s) ≤ vi, i ∈ N+. (9)

A modification to OPF is necessary to ensure an exact
SOCP, since otherwise examples exist where SOCP is not exact.
Remarkably, the feasible sets of OPF-m and OPF are similar
since v̂i(s) is close to vi in practice [17], [32], [33].

One can relax (5d) to (6) to obtain the corresponding SOCP
relaxation for OPF-m

SOCP-m : min
∑
i∈N

fi (Re(si))

over s, S, v, �, s0

s.t. (5a)–(5c), (6), (5e), (9).

Note again that SOCP-m is not necessarily convex, since we
allow fi and Si to be nonconvex.

Since OPF-m is obtained by imposing additional constraint
(8) on OPF, it follows immediately from Remark 1 that SOCP-
m relaxation is exact under C1—a mild condition that can be
checked a priori.

Theorem 2: Assume that f0 is strictly increasing, and
that there exist pi and qi such that Si ⊆ {s ∈ C | Re(s) ≤
pi, Im(s) ≤ qi} for i ∈ N+. Then SOCP-m is exact if
C1 holds.

The next result implies that SOCP (SOCP-m) has at most one
optimal solution if it is convex and exact. The theorem is proved
in Appendix D.

Theorem 3: If fi is convex for i ∈ N , Si is convex for i ∈
N+, and SOCP (SOCP-m) is exact, then SOCP (SOCP-m) has
at most one optimal solution.

The proof of Theorem 3 also implies that the feasible set of
OPF (OPF-m) is hollow, as stated in the following corollary.

Corollary 1: Let x̃ = (s̃, S̃, ṽ, �̃, ṽ0) and x̂ = (ŝ, Ŝ, v̂, �̂, v̂0)
be two distinct feasible points of OPF (OPF-m), then any
convex combination of x̃ and x̂ cannot be feasible for OPF
(OPF-m), i.e., the point x = θx̃+ (1− θ)x̂ is infeasible for
OPF (OPF-m) for any θ ∈ (0, 1).

The proof of Corollary 1 is similar to that of Theorem 3 and
omitted for brevity.

V. CONNECTION WITH PRIOR RESULTS

Theorem 1 unifies and generalizes the results in [46], [47]
due to Theorem 4 proved in Appendix E. Theorem 4 below says
that C1 holds if at least one of the followings hold: 1) Every bus
only consumes real and reactive power; 2) Lines share the same
resistance to reactance ratio; 3) The buses only consume real
power and the resistance to reactance ratio increases as lines
branch out from the substation; 4) The buses only consume
reactive power and the resistance to reactance ratio decreases as
lines branch out from the substation; 5) Upper bounds P̂+(p̄),
Q̂+(q̄) on reverse power flows are sufficiently small. Let

E′ := {(i, j) ∈ E | i 	∈ L}

denote the set of all non-leaf lines.
Theorem 4: Assume that there exist pi and qi such that Si ⊆

{s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for i ∈ N+. Then C1 holds
if any one of the following statements is true:

1) Ŝij(p+ iq) ≤ 0 for all (i, j) ∈ E′.
2) rij/xij is identical for all (i, j) ∈ E ; and vi −

2rijP̂
+
ij (p)− 2xijQ̂

+
ij(q) > 0 for all (i, j) ∈ E′.

3) rij/xij ≥ rjk/xjk whenever (i, j), (j, k) ∈ E ; and
P̂ij(p) ≤ 0, vi − 2xijQ̂

+
ij(q) > 0 for all (i, j) ∈ E′.

4) rij/xij ≤ rjk/xjk whenever (i, j), (j, k) ∈ E ; and
Q̂ij(q) ≤ 0, vi − 2rijP̂

+
ij (p) > 0 for all (i, j) ∈ E′.

5)

[∏
(k,l)∈Pj

ckl −
∑

(k,l)∈Pj
dkl

−
∑

(k,l)∈Pj
ekl

∏
(k,l)∈Pj

fkl

][
rij
xij

]
>0 for all (i, j)∈

E where ckl :=1−2rklP̂
+
kl(p̄)/vk, dkl := 2rklQ̂

+
kl(q̄)/vk,

ekl := 2xklP̂
+
kl(p̄)/vk, and fkl := 1− 2xklQ̂

+
kl(q̄)/vk.

The results in [46], [47] say that, if there are no voltage
upper bounds, i.e., v = ∞, then SOCP is exact if any one of
1)–5) holds. Since C2 holds automatically when v = ∞ and C1
holds if any one of 1)–5) holds (Theorem 4), the results in [46],
[47] follow from Theorem 1. Besides, the following corollary
follows immediately from Theorems 2 and 4.

Corollary 2: Assume that f0 is strictly increasing, and
that there exist pi and qi such that Si ⊆ {s ∈ C | Re(s) ≤
pi, Im(s) ≤ qi} for i ∈ N+. Then SOCP-m is exact if any one
of 1)–5) holds.

VI. CASE STUDIES

In this section, we use six test networks to demonstrate that
1) SOCP is simpler computationally than SDP.
2) C1 holds. We define C1 margin that quantifies how well

C1 is satisfied, and show that the margin is big.
3) The feasible sets of OPF and OPF-m are similar. We

define modification gap that quantifies the difference
between the feasible sets of OPF and OPF-m, and show
that this gap is small.

A. Test Networks

The test networks include IEEE 13, 34, 37, 123-bus networks
[48] and two real-world networks [30], [49] in the service terri-
tory of Southern California Edison (SCE), a utility company in
California, USA [50].
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Fig. 7. Topologies of the SCE 47-bus and 56-bus networks [30], [49].

TABLE I
LINE IMPEDANCES, PEAK SPOT LOAD, AND NAMEPLATE RATINGS OF CAPACITORS AND PV GENERATORS OF THE 47-BUS NETWORK

The IEEE networks are unbalanced three-phase radial net-
works with some devices (regulators, circuit switches, trans-
formers, and distributed loads) not modeled in (1). Therefore
we modify the IEEE networks as follows.

1) Assume that each bus has three phases and split its load
uniformly among the three phases.

2) Assume that the three phases are decoupled so that the
network becomes three identical single phase networks.

3) Model closed circuit switches as shorted lines and ig-
nore open circuit switches. Model regulators as multi-
plying the voltages by fixed constants (set to 1.08 in
the simulations). Model transformers as lines with ap-

propriate impedances. Model the distributed load on a
line as two identical spot loads located at two ends of
the line.

The SCE networks, a 47-bus network and a 56-bus network, are
shown in Fig. 7 with parameters given in Tables I and II.

These networks have increasing penetration of distributed
generation (DG) as listed in Table III. While the IEEE networks
do not have any DG, the SCE 47-bus network has 56.6% DG
penetration (6.4 MW nameplate DG capacity against 11.3 MVA
peak spot load), and the SCE 56-bus network has 130.4% DG
penetration (5 MW nameplate DG capacity against 3.835 MVA
peak spot load).
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TABLE II
LINE IMPEDANCES, PEAK SPOT LOAD, AND NAMEPLATE RATINGS OF CAPACITORS AND PV GENERATORS OF THE 56-BUS NETWORK

TABLE III
DG PENETRATION, C1 MARGINS, MODIFICATION GAPS, AND COMPUTATION TIMES FOR DIFFERENT TEST NETWORKS

B. SOCP is More Efficient to Compute Than SDP

We compare the computation times of SOCP and SDP for
the test networks, and summarize the results in Table III. All
simulations in this paper use matlab 7.9.0.529 (64-bit) with
toolbox cvx 1.21 on Mac OS X 10.7.5 with 2.66 GHz Intel Core
2 Due CPU and 4 GB 1067 MHz DDR3 memory.

We use the following OPF setup throughout the simulations.

1) The objective is to minimize power loss in the network.
2) The power injection constraints are as follows. For each

bus i ∈ N+, there may be multiple devices including
loads, capacitors, and PV panels. Assume that there is a
total of Di such devices and label them by 1, 2, . . . , Di.
Let si,d denote the power injection of device d for d =
1, 2, . . . , Di. If device d is a load with given real and
reactive power consumptions p and q, then we impose

si,d = −p− iq. (10)

If device d is a load with given peak apparent power
speak, then we impose

si,d = −speak exp(jθ) (11)

where θ = cos−1(0.9), i.e, power injection si,d is con-
sidered to be a constant, obtained by assuming a power
factor of 0.9 at peak apparent power. If device d is a
capacitor with nameplate q, then we impose

Re(si,d) = 0 and 0 ≤ Im(si,d) ≤ q. (12)

If device d is a PV panel with nameplate s, then we
impose

Re(si,d) ≥ 0 and |si,d| ≤ s. (13)

The power injection at bus i is

si =

Di∑
d=1

si,d

where si,d satisfies one of (10)–(13).
3) The voltage regulation constraint is considered to be

0.92 ≤ vi ≤ 1.12 for i ∈ N+. Note that we choose a
small voltage lower bound 0.9 so that OPF is feasible
for all test networks. We choose a big voltage upper
bound 1.1 such that Condition C2 holds and therefore
SDP/SOCP is exact under C1.

The computation times of SDP and SOCP for different test
networks are summarized in Fig. 8. The number of buses
determines the number of constraints and variables in the
optimization, and therefore reflects the problem size. Network
topology also affects the computation time. As the number
of buses increases, the computation time of SOCP scales up
much more slowly than that of SDP and their ratio increases
dramatically. Hence SOCP is much more efficient than SDP for
medium to large networks.

SOCP and SDP can only be solved to certain numerical
precisions. The best numerical precision we obtain without
applying pre-conditioning techniques are listed in Table III.
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Fig. 8. Comparison of the computation times for SOCP and SDP.

C. C1 Holds With a Large Margin

In this section, we show that C1 holds with a large margin for
all test networks. Noting that C1 becomes more difficult to hold
as (p, q) increases (Proposition 1), one can increase p, q until
C1 fails. More specifically, let pfixi and qfixi denote the fixed real
and reactive loads at bus i ∈ N+, let PVi and Capi denote the
nameplate capacities of the photovoltaic panels and the shunt
capacitors at bus i ∈ N+, and define

pi(η) := pfixi + η · PVi, i ∈ N+, η ≥ 0

qi(η) := qfixi + η · (PVi +Capi), i ∈ N+, η ≥ 0.

When η = 0, one has (p(η), q(η)) ≤ 0 and therefore C1 holds
according to Proposition 2. According to Proposition 1, there
exists a unique η∗ ∈ R

+ ∪ {+∞} such that

η <η∗ ⇒ C1 holds for (r, x, p(η), q(η), v) (14a)

η >η∗ ⇒ C1 does not hold for (r, x, p(η), q(η), v) . (14b)

Definition 2: C1 margin is defined as the unique η∗ ≥ 0 that
satisfies (14).

Physically, η∗ is the multiple by which one can scale up
distributed generation (PVs) and shunt capacitors before C1
fails to hold. Noting that p = p(1) and q = q(1), C1 holds for
(r, x, p, q, v) if and only if η∗ > 1 (ignore the corner case where
η∗ = 1). The larger η∗ is, the “more easily” C1 holds.

The C1 margins of different test networks are summarized
in Table III. The minimum C1 margin is 1.30, meaning that one
can scale up distributed generation and shunt capacitors by 1.30
times before C1 fails to hold. C1 margin of the IEEE 37-bus
network is +∞, and this is because there is neither distributed
generation nor shunt capacitors in the network.

The C1 margin is above 20 for all IEEE networks, but much
smaller for SCE networks. This is because SCE networks have
big p and q (due to big PVi and Capi) that make C1 more
difficult to hold. However, note that the SCE 56-bus network
already has a DG penetration of over 130%, and that one can
still scale up its DG by a factor of 1.30 times before C1 breaks
down. This highlights that C1 is a mild condition.

D. The Feasible Sets of OPF and OPF-m are Similar

In this section, we show that OPF-m eliminates some feasible
points of OPF that are close to the voltage upper bounds for

Fig. 9. Feasible sets of OPF-ε, OPF-m, and OPF. The point w is feasible for
OPF but not for OPF-m.

all test networks. To present the result, let FOPF denote the
feasible set of OPF, let ‖ · ‖∞ denote the �∞ norm,1 and let

ε := max ‖v̂(s)− v‖∞ s.t. (s, S, v, �, s0) ∈ FOPF (15)

denote the maximum deviation of v from its linear approxima-
tion v̂(s) over all OPF feasible points (s, S, v, �, s0).

The value ε quantifies the difference between the feasible sets
of OPF and OPF-m. Consider the OPF problem with a stricter
voltage upper bound constraint

OPF-ε : min
∑
i∈N

fi (Re(si))

over s, S, v, �, s0

s.t. (5a)–(5e)

vi ≤ vi ≤ vi − ε, i ∈ N+.

The feasible set FOPF-ε of OPF-ε is contained in FOPF. Hence,
for every (s, S, �, v, s0) ∈ FOPF-ε ⊆ FOPF, one has

v̂i(s) ≤ vi + ‖v̂(s)− v‖∞ ≤ vi − ε+ ε = vi, i ∈ N+

by (15). It follows that FOPF-ε ⊆ FOPF-m and therefore

FOPF-ε ⊆ FOPF-m ⊆ FOPF

as illustrated in Fig. 9.
If ε is small, then FOPF-m is similar to FOPF. Any point w

that is feasible for OPF but infeasible for OPF-m is close to the
voltage upper bound since vi > vi − ε for some i ∈ N+. Such
points are perhaps undesirable for robust operation.

Definition 3: The value ε defined in (15) is called the modi-
fication gap.

1The �∞ norm of a vector x = (x1, . . . , xn) ∈ Rn is defined as ‖x‖∞ :=
max{|x1|, . . . , |xn|}.
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We demonstrate that the modification gap ε is small for all
test networks through Monte-Carlo simulations. Note that ε is
difficult to compute since the objective function in (15) is not
concave and the constraints in (15) are not convex. We choose
1000 samples of s, calculate the corresponding (S, v, �, s0)
by solving the power flow (1a)–(1d) (using the forward back-
ward sweep algorithm [51]) for each s, and compute ε(s) :=
‖v̂(s)− v‖∞ if (s, S, v, �, s0) ∈ FOPF. We use the maximum
ε(s) over the 1000 samples as an estimate for ε. The estimated
modification gap εest we obtained for different test networks
are listed in Table III. For example, εest = 0.0362 for the
IEEE 13-bus network, in which case the voltage constraints are
0.81 ≤ vi ≤ 1.21 for OPF and 0.81 ≤ vi ≤ 1.1738 for OPF-ε
(assuming ε = εest).

VII. CONCLUSION

We have proved that SOCP is exact if Condition C1 and
C2 hold. C1 can be checked a priori, and has the physical
interpretation that upstream power flows should increase if the
power loss on a line is reduced. C2 requires that optimal power
injections lie in a region Svolt where voltage upper bounds
do not bind. We have proposed a modified OPF problem that
includes the additional constraint that power injections lie in
Svolt, such that the corresponding SOCP relaxation is exact
under C1. We have also proved that SOCP has at most one
optimal solution if it it convex and exact. These results unify
and generalize our prior works [46], [47]. Empirical studies
show that C1 holds with large margin and that the feasible sets
of OPF and OPF-m are close, for the IEEE 13, 34, 37, 123-bus
networks and two real-world networks.

APPENDIX A
PROOF OF LEMMA 1

Let (s, S, v, �, s0) satisfy (1a)–(1c) and � ≥ 0 component-
wise. It follows from (1a) that

Sij = si +
∑

h:h→i

(Shi − zhi�hi) ≤ si +
∑

h:h→i

Shi

for (i, j) ∈ E . On the other hand, Ŝij(s) is the solution of

Ŝij = si +
∑

h:h→i

Ŝhi, (i, j) ∈ E .

By induction from the leaf lines, one can show that

Sij ≤ Ŝij(s), (i, j) ∈ E .

It follows from (1c) that:

vi − vj =2Re(z̄ijSij)− |zij |2�ij

≤ 2Re(z̄ijSij)

≤ 2Re
(
z̄ijŜij(s)

)

Fig. 10. Bus l is a leaf bus, with lk = k for k = 0, . . . ,m. Equality (5d) is
satisfied on [0,m− 1], but violated on [m− 1,m].

for (i, j) ∈ E . Sum up the inequalities over Pi to obtain

vi − v0 ≤ 2
∑

(j,k)∈Pi

Re
(
z̄jkŜjk(s)

)

i.e., vi ≤ v̂i(s), for i ∈ N .

APPENDIX B
PROOF OF THEOREM 1

The proof idea of Theorem 1 has been illustrated via a 3-bus
linear network in Section III-A. Now we present the proof
of Theorem 1 for general radial networks. Assume that f0
is strictly increasing, and that C1 and C2 hold. If SOCP is
not exact, then there exists an optimal SOCP solution w =
(s, S, v, �, s0) that violates (5d). We will construct another
feasible point w′ = (s′, S ′, v′, �′, s′0) of SOCP that has a smaller
objective value than w. This contradicts the optimality of w, and
therefore SOCP is exact.

Construction of w′: The construction of w′ is as fol-
lows. Since w violates (5d), there exists a leaf bus l ∈
L with m ∈ {1, . . . , nl} such that w satisfies (5d) on
(l1, l0), . . . , (lm−1, lm−2) and violates (5d) on (lm, lm−1).
Without loss of generality, assume lk = k for k = 0, . . . ,m as
in Fig. 10. Then

�m,m−1 >
|Sm,m−1|2

vm
(16a)

�k,k−1 =
|Sk,k−1|2

vk
, k = 1, . . . ,m− 1. (16b)

One can then construct w′ = (s′, S ′, v′, �′, s′0) as in
Algorithm 1. The construction consists of three steps:

S1 In the initialization step, s′, �′ outside path Pm, and S ′

outside path Pm−1 are initialized as the corresponding
values in w. Since s′ = s, the point w′ satisfies (5e).
Furthermore, since �′ij = �ij for (i, j) 	∈ Pm and S ′

ij =
Sij for (i, j) 	∈ Pm−1, the point w′ also satisfies (5a) for
(i, j) 	∈ Pm−1.

S2 In the forward sweep step, �′k,k−1 and S ′
k−1,k−2 are re-

cursively constructed for k = m, . . . , 1 by alternatively
applying (5d) (with v′ replaced by v) and (5a)/(5b).
Hence, w′ satisfies (5a) for (i, j) ∈ Pm−1 and (5b).

S3 In the backward sweep step, v′i is recursively constructed
from bus 0 to leaf buses by applying (5c) consecutively.
Hence, the point w′ satisfies (5c).
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The point w′ satisfies another important property given below.

Algorithm 1 Construct a feasible point

Input: an optimal SOCP solution w = (s, S, v, �, s0) that
violates (5d), a leaf bus l ∈ L with 1 ≤ m ≤ nl such that
(16) holds (assume lk = k for k = 0, . . . ,m without loss
of generality).

Output: w′ = (s′, S ′, v′, �′, s′0).
1: Initialization.

(Construct s′, �′ outside Pm, and S ′ outside Pm−1.)
keep s:

s′ ← s;

keep � outside path Pm:

�′ij ← �ij , (i, j) 	∈ Pm;

keep S outside path Pm−1:

S ′
ij ← Sij , (i, j) 	∈ Pm−1;

2: Forward sweep.
(Construct �′ on Pm, S ′ on Pm−1, and s′0.)
for k = m,m− 1, . . . , 1 do

�′k,k−1 ←
|S ′

k,k−1|
2

vk
;

S ′
k−1,k−2 ← sk−1 l1k 	=1

+
∑

j:j→k−1

(
S ′
j,k−1 − zj,k−1�

′
j,k−1

)
;

end for

s′0 ← −S ′
0,−1;

3: Backward sweep.
(Construct v′.)

v′0 ← v0,Nvisit = {0};

while Nvisit 	= N do
find i 	∈ Nvisit and j ∈ Nvisit such that i → j;

v′i ← v′j + 2Re
(
z̄ijS

′
ij

)
− |zij |2�′ij ;

Nvisit ←Nvisit ∪ {i};

end while

Lemma 2: The point w′ satisfies �′ij≥|S ′
ij |

2/vi for (i, j)∈E .
Proof: When (i, j) 	∈ Pm, it follows from Step S1 that

�′ij = �ij ≥ |Sij |2/vi = |S ′
ij |

2/vi. When (i, j) ∈ Pm, it fol-

lows from Step S2 that �′ij = |S ′
ij |

2/vi. This completes the
proof of Lemma 2. �

Lemma 2 implies that if v′ ≥ v, then w′ satisfies (6).
Feasibility and Superiority of w′: We will show that w′ is

feasible for SOCP and has a smaller objective value than w.
This result follows from Claims 1 and 2.

Fig. 11. Illustration of S′
k,k−1 > Sk,k−1 for k = 0, . . . ,m− 1.

Claim 1: If C1 holds, then S ′
k,k−1 > Sk,k−1 for k =

0, . . . ,m− 1 and v′ ≥ v.
Claim 1 is proved later in this appendix. Here we illus-

trate with Fig. 11 that S ′
k,k−1 > Sk,k−1 for k = 0, . . . ,m− 1

seems natural to hold. Note that S ′
m,m−1 = Sm,m−1 and that

�′m,m−1 = |S ′
m,m−1|

2/vm =|Sm,m−1|2/vm < �m,m−1. Define
Δw = (Δs,ΔS,Δv,Δ�,Δs0) = w′ − w, then Δ�m,m−1 < 0
and therefore

ΔSm−1,m−2 =ΔSm,m−1 − zm,m−1Δ�m,m−1

= −zm,m−1Δ�m,m−1 > 0. (17)

Intuitively, after increasing Sm−1,m−2, upstream reverse power
flow Sk,k−1 is likely to increase for k = 0, . . . ,m− 2. C1 is a
condition that ensures Sk,k−1 to increase for k = 0, . . . ,m− 1.

Claim 2: If C2 holds, then v′ ≤ v.
Proof: If C2 holds, then it follows from Lemma 1 that

v′ ≤ v̂(s′) = v̂(s) ≤ v. �
It follows from Claims 1 and 2 that v ≤ v ≤ v′ ≤ v, and

therefore w′ satisfies (5f). Besides, it follows from Lemma 2
that �′ij ≥ |S ′

ij |
2/vi ≥ |S ′

ij |
2/v′i for (i, j) ∈ E , i.e., w′ satisfies

(6). Hence, w′ is feasible for SOCP. Furthermore, w′ has a
smaller objective value than w because∑
i∈N

fi (Re (s
′
i))−

∑
i∈N

fi (Re(si))

= f0
(
−Re

(
S ′
0,−1

))
− f0 (−Re(S0,−1)) < 0.

This contradicts with the optimality of w, and therefore SOCP
is exact. To complete the proof, we are left to prove Claim 1.

Proof of Claim 1: Assume C1 holds. First show that
ΔSk,k−1 > 0 for k = 0, . . . ,m− 1. Recall that S = P + iQ
and that ui = (rij xij)

T . It follows from (17) that:[
ΔPm−1,m−2

ΔQm−1,m−2

]
= −umΔ�m,m−1 > 0.

For any k ∈ {1, . . . ,m− 1}, one has

ΔSk−1,k−2 =ΔSk,k−1 − zk,k−1Δ�k,k−1

=ΔSk,k−1 − zk,k−1

∣∣∣S ′
k,k−1

∣∣∣2 − |Sk,k−1|2

vk

which is equivalent to[
ΔPk−1,k−2

ΔQk−1,k−2

]
= Bk

[
ΔPk,k−1

ΔQk,k−1

]

where

Bk=I −
2

vk

[
rk,k−1

xk,k−1

][
Pk,k−1+P

′
k,k−1

2

Qk,k−1+Q′
k,k−1

2

]
.
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Hence, one has[
ΔPk−1,k−2

ΔQk−1,k−2

]
= −BkBk+1 · · ·Bm−1umΔ�m,m−1

for k=1, . . . ,m. To prove ΔSk,k−1>0 for k=0, . . . ,m−1, it
suffices to show that Bk · · ·Bm−1um > 0 for k = 1, . . . ,m.

C1 implies that As · · ·At−1ut > 0 when 1 ≤ s ≤ t ≤ m.
One also has Bk −Ak = ukb

T
k where

bk =

[ 2P̂+
k,k−1

(p)

v
k

− Pk,k−1+P ′
k,k−1

vk

2Q̂+
k,k−1

(q)

v
k

− Qk,k−1+Q′
k,k−1

vk

]
≥ 0

for k = 1, . . . ,m− 1. To show that Bk · · ·Bm−1um > 0 for
k = 1, . . . ,m, we prove the following lemma.

Lemma 3: Given m≥1 and d≥1. Let A1, . . . , Am−1, A1,
. . . , Am−1 ∈ R

d×dand u1, . . . , um ∈ R
d satisfy

• As · · ·At−1ut > 0 when 1 ≤ s ≤ t ≤ m;
• there exists bk ∈ R

d that satisfies bk ≥ 0 and Ak −Ak =
ukb

T
k , for k = 1, . . . ,m− 1.

Then

As · · ·At−1ut > 0 (18)

when 1 ≤ s ≤ t ≤ m.
Proof: We prove that (18) holds when 1 ≤ t ≤ s ≤ m by

mathematical induction on t− s.

i) When t− s = 0, one has As · · ·At−1ut = ut =
As · · ·At−1ut > 0.

ii) Assume that (18) holds when t− s = 0, 1, . . . ,K (0 ≤
K ≤ m− 2). When t− s = K + 1, one has

As · · ·AkAk+1 · · ·At−1ut

= As · · ·Ak−1AkAk+1 · · ·At−1ut

+As · · ·Ak−1(Ak −Ak)Ak+1 · · ·At−1ut

= As · · ·Ak−1Ak · · ·At−1ut

+As · · ·Ak−1ukb
T
kAk+1 · · ·At−1ut

= As · · ·Ak−1Ak · · ·At−1ut

+
(
bTkAk+1 · · ·At−1ut

)
As · · ·Ak−1uk

for k = s, . . . , t− 1. Since bk ≥ 0 and Ak+1 · · ·
At−1ut > 0, the term bTkAk+1 · · ·At−1ut ≥ 0. According
to induction hypothesis, As · · ·Ak−1uk > 0. Hence

As · · ·AkAk+1 · · ·At−1ut ≥ As · · ·Ak−1Ak · · ·At−1ut

for k = s, . . . , t− 1. By substituting k = t− 1, . . . , s in
turn, one obtains

As · · ·At−1ut ≥As · · ·At−2At−1ut

≥ · · ·
≥ As · · ·At−1ut > 0

i.e., (18) holds when t− s = K + 1.

According to i) and ii), (18) holds when t− s = 0, . . . ,m− 1.
This completes the proof of Lemma 3. �

Lemma 3 implies that Bs · · ·Bt−1ut>0 when 1≤s≤ t≤m.
In particular, Bk · · ·Bm−1um > 0 for k = 1, . . . ,m, and there-
fore ΔSk,k−1 > 0 for k = 0, . . . ,m− 1.

Next show that v′ ≥ v. Noting that ΔSij = 0 for (i, j) 	∈
Pm−1 and Δ�ij = 0 for (i, j) 	∈ Pm, it follows from (5c) that

Δvi −Δvj = 2Re(z̄ijΔSij)− |zij |2Δ�ij = 0

for (i, j) 	∈ Pm. When (i, j) ∈ Pm, one has (i, j) = (k, k − 1)
for some k ∈ {1, . . . ,m}, and therefore

Δvi −Δvj =2Re(z̄k,k−1ΔSk,k−1)− |zk,k−1|2Δ�k,k−1

≥Re(z̄k,k−1ΔSk,k−1)− |zk,k−1|2Δ�k,k−1

=Re (z̄k,k−1(ΔSk,k−1 − zk,k−1Δ�k,k−1))

=Re(z̄k,k−1ΔSk−1,k−2) > 0.

Hence, Δvi ≥ Δvj whenever (i, j) ∈ E . Add the inequalities
over path Pi to obtain Δvi ≥ Δv0 = 0 for i ∈ N+, i.e., v′ ≥ v.
This completes the proof of Claim 1.

APPENDIX C
PROOF OF PROPOSITION 1

Let A and A′ denote the matrices with respect to (p, q) and
(p′, q′) respectively, i.e., let

A′
i = I − 2

vi
ui

(
P̂+
ij (p

′) Q̂+
ij(q

′)
)
, (i, j) ∈ E

Ai = I − 2

vi
ui

(
P̂+
ij (p) Q̂+

ij(q)
)
, (i, j) ∈ E .

When (p, q) ≤ (p′, q′), one has Alk −A′
lk

= ulkb
T
lk

where

blk =
2

vlk

[
P̂+
lklk−1

(p′)− P̂+
lklk−1

(p)

Q̂+
lklk−1

(q′)− Q̂+
lklk−1

(q)

]
≥ 0

for any l ∈ L and any k ∈ {1 . . . , nl}.
If A′

ls
· · ·A′

lt−1
ult > 0 for any l ∈ L and any s, t such

that 1 ≤ s ≤ t ≤ nl, then it follows from Lemma 3 that
Als · · ·Alt−1

ult > 0 for any l ∈ L any s, t such that 1 ≤ s ≤
t ≤ nl. This completes the proof of Proposition 1.

APPENDIX D
PROOF OF THEOREM 3

In this appendix, we prove that SOCP has at most a unique
solution under the conditions in Theorem 3. The proof for
SOCP-m is similar and omitted for brevity.

Assume that fi is convex for i ∈ N , Si is convex for i ∈
N+, SOCP is exact, and SOCP has at least one solution. Let
w̃ = (s̃, S̃, ṽ, �̃, s̃0) and ŵ = (ŝ, Ŝ, v̂, �̂, ŝ0) denote two arbi-
trary SOCP solutions. It suffices to show that w̃ = ŵ.
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Since SOCP is exact, ṽi�̃ij = |S̃ij |2 and v̂i�̂ij = |Ŝij |2 for
(i, j) ∈ E . Define w := (w̃ + ŵ)/2. Since SOCP is convex, w
also solves SOCP. Hence, vi�ij = |Sij |2 for (i, j) ∈ E . Sub-
stitute vi = (ṽi + v̂i)/2, �ij = (�̃ij + �̂ij)/2, and Sij = (S̃ij +

Ŝij)/2 to obtain

ŜijS̃
H
ij + S̃ijŜ

H
ij = v̂i�̃ij + ṽi�̂ij

for (i, j) ∈ E where the superscript H stands for hermitian
transpose. The right hand side

v̂i�̃ij + ṽi�̂ij = v̂i
|S̃ij |2
ṽi

+ ṽi
|Ŝij |2
v̂i

≥ 2|S̃ij‖Ŝij |

and the equality is attained if and only if |S̃ij |/ṽi = |Ŝij |/v̂i.
The left hand side

ŜijS̃
H
ij + S̃ijŜ

H
ij ≤ 2|S̃ij‖Ŝij |

and the equality is attained if and only if ∠Ŝij = ∠S̃ij . Hence,
S̃ij/ṽi = Ŝij/v̂i for (i, j) ∈ E .

Introduce v̂0 := ṽ0 := v0 and define ηi := v̂i/ṽi for i ∈ N ,
then η0 = 1 and Ŝij = ηiS̃ij for (i, j) ∈ E . Hence

�̂ij =
|Ŝij |2
v̂i

=
|ηiS̃ij |2
ηiṽi

= ηi
|S̃ij |2
ṽi

= ηi�̃ij

and therefore

ηj =
v̂j
ṽj

=
v̂i − 2Re(zHij Ŝij) + |zij |2�̂ij
ṽi − 2Re

(
zHij S̃ij

)
+ |zij |2�̃ij

= ηi

for (i, j) ∈ E . Since the network (N , E) is connected, ηi =
η0 = 1 for i ∈ N . This implies ŵ = w̃ and completes the proof
of Theorem 3.

APPENDIX E
PROOF OF THEOREM 4

Theorem 4 follows from Claims 3–7.
Claim 3: Assume that there exist pi and qi such that Si ⊆

{s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for i ∈ N+. Then C1 holds
if Ŝij(p+ iq) ≤ 0 for all (i, j) ∈ E′.

Proof: If Ŝij(p+ iq) ≤ 0 for all (i, j) ∈ E′, then Alk =
I for all l ∈ L and all k ∈ {1 . . . , nl − 1}. It follows that
Als · · ·Alt−1

ult = ult > 0 for all l ∈ L and all s, t such that
1 ≤ s ≤ t ≤ nl, i.e., C1 holds. �

Claim 4: Assume that there exist pi and qi such that
Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for i ∈ N+. Then C1
holds if 1) rij/xij is identical for all (i, j) ∈ E ; and 2) vi −
2rijP̂

+
ij (p)− 2xijQ̂

+
ij(q) > 0 for all (i, j) ∈ E′.

Proof: Assume the conditions in Claim 4 hold. Fix an
arbitrary l ∈ L, and assume lk = k for k = 0, . . . , nl without
loss of generality. Fix an arbitrary t ∈ {1, . . . , nl}, and define
(αs βs)

T := As · · ·At−1ut for s = 1, . . . , t. Then it suffices
to prove that αs > 0 and βs > 0 for s = 1, . . . , t. In particular,
we prove

αs > 0, βs > 0,
αs

βs
=

r10
x10

(19)

inductively for s = t, t− 1, . . . , 1. Define η := r10/x10 and
note that rij/xij = η for all (i, j) ∈ E .

i) When s = t, one has αs = rt,t−1, βs = xt,t−1, and
αs/βs = η. Therefore (19) holds.

ii) Assume that (19) holds for s = k (2 ≤ k ≤ t), then

[αk βk]
T = c[η 1]T

for some c ∈ {c ∈ R | c > 0}. Abbreviate rk−1,k−2 by r,
xk−1,k−2 by x, P̂+

k−1,k−2(p̄) by P , and Q̂+
k−1,k−2(q̄) by Q

for convenience. Then

vk−1 − 2rP − 2xQ > 0

and it follows that:

[
αk−1

βk−1

]
=

(
I − 2

vk−1

[
r

x

]
[P Q]

)[
αk

βk

]

=

(
I − 2

vk−1

x

[
η

1

]
[P Q]

)
c

[
η

1

]

= c

[
η

1

]
− 2

vk−1

c

[
η

1

]
[P Q]x

[
η

1

]

=

[
αk

βk

]
− 2

vk−1

[
αk

βk

]
[P Q]

[
r

x

]

=

(
1− 2

vk−1

(rP + xQ)

)[
αk

βk

]

=
1

vk−1

(vk−1 − 2rP − 2xQ)

[
αk

βk

]
> 0

and αk−1/βk−1 = αk/βk = η. Hence, (19) holds for
s = k − 1.

According to i) and ii), (19) holds for s = t, t− 1 . . . , 1. This
completes the proof of Claim 4. �

Claim 5: Assume that there exist pi and qi such that
Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for i ∈ N+. Then C1
holds if 1) rij/xij ≥ rjk/xjk whenever (i, j), (j, k) ∈ E ; and
2) P̂ij(p) ≤ 0, vi − 2xijQ̂

+
ij(q) > 0 for all (i, j) ∈ E′.

Proof: Assume the conditions in Claim 5 hold. Fix an
arbitrary l ∈ L, and assume lk = k for k = 0, . . . , nl without
loss of generality. Fix an arbitrary t ∈ {1, . . . , nl}, and define
(αs βs)

T := As · · ·At−1ut for s = 1, . . . , t. Then it suffices
to prove that αs > 0 and βs > 0 for s = 1, . . . , t. In particular,
we prove

αs > 0, βs > 0,
αs

βs
≥ rt,t−1

xt,t−1
(20)

inductively for s = t, t− 1, . . . , 1. Define η := rt,t−1/xt,t−1

and note that rs,s−1/xs,s−1 ≤ η for s = 1, 2, . . . , t.
i) When s = t, one has αs = rt,t−1, βs = xt,t−1, and

αs/βs = η. Therefore (20) holds.
ii) Assume that (20) holds for s = k (2 ≤ k ≤ t), then

αk ≥ ηβk > 0.
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Abbreviate rk−1,k−2 by r, xk−1,k−2 by x, P̂+
k−1,k−2(p̄) by

P , and Q̂+
k−1,k−2(q̄) by Q for convenience. Then

P = 0, vk−1 − 2xQ > 0

and it follows that:[
αk−1

βk−1

]
=

(
I − 2

vk−1

[
r

x

]
[P Q]

)[
αk

βk

]

=

[
αk

βk

]
− 2

vk−1

[
r

x

]
Qβk.

Hence

βk−1 = βk − 2xQ

vk−1

βk =
1

vk−1

(vk−1 − 2xQ)βk > 0.

Then

αk−1 =αk − 2rQ

vk−1

βk

≥
(
η − 2rQ

vk−1

)
βk

≥ η

(
1− 2xQ

vk−1

)
βk

= ηβk−1 > 0.

The second inequality is due to r/x ≤ η. Hence, (20)
holds for s = k − 1.

According to i) and ii), (20) holds for s = t, t− 1, . . . , 1. This
completes the proof of Claim 5. �

Claim 6: Assume that there exist pi and qi such that
Si ⊆ {s ∈ C | Re(s) ≤ pi, Im(s) ≤ qi} for i ∈ N+. Then C1
holds if 1) rij/xij ≤ rjk/xjk whenever (i, j), (j, k) ∈ E ; and
2) Q̂ij(q) ≤ 0, vi − 2rijP̂

+
ij (p) > 0 for all (i, j) ∈ E′.

Proof: The proof of Claim 6 is similar to that of Claim 5
and omitted for brevity. �

Claim 7: Assume that there exist pi and qi such that Si ⊆
{s ∈ C | Re(s)≤pi, Im(s)≤qi} for i∈N+. Then C1 holds if⎡

⎣
∏

(k,l)∈Pj

ckl −
∑

(k,l)∈Pj

dkl

−
∑

(k,l)∈Pj

ekl
∏

(k,l)∈Pj

fkl

⎤
⎦[

rij
xij

]
> 0, (i, j) ∈ E

(21)

where ckl :=1−2rklP̂
+
kl(p̄)/vk, dkl :=2rklQ̂

+
kl(q̄)/vk, ekl :=

2xklP̂
+
kl(p̄)/vk, and fkl := 1− 2xklQ̂

+
kl(q̄)/vk.

The following lemma is used in the proof of Claim 7.
Lemma 4: Given i ≥ 1; c, d, e, f ∈ R

i such that 0 < c ≤ 1,
d ≥ 0, e ≥ 0, and 0 < f ≤ 1 componentwise; and u ∈ R

2 that
satisfies u > 0. If⎡

⎢⎢⎣
i∏

j=1

cj −
i∑

j=1

dj

−
i∑

j=1

ej
i∏

j=1

fj

⎤
⎥⎥⎦u > 0 (22)

then [
cj −dj
−ej fj

]
· · ·

[
ci −di
−ei fi

]
u > 0 (23)

for j = 1, . . . , i.

Proof: Lemma 4 can be proved by mathematical induction
on i.

i) When i = 1, Lemma 4 is trivial.
ii) Assume that Lemma 4 holds for i = K (K ≥ 1). When

i = K + 1, if⎡
⎢⎢⎣

i∏
j=1

cj −
i∑

j=1

dj

−
i∑

j=1

ej
i∏

j=1

fj

⎤
⎥⎥⎦u > 0

one can prove that (23) holds for j = 1, . . . ,K + 1 as
follows.

First prove that (23) holds for j = 2, . . . ,K + 1. The
idea is to construct some c′, d′, e′, f ′ ∈ R

K and apply the
induction hypothesis. The construction is

c′ =(c2, c3, . . . , cK+1)

d′ =(d2, d3, . . . , dK+1)

e′ =(e2, e3, . . . , eK+1)

f ′ =(f2, f3, . . . , fK+1).

Clearly, c′, d′, e′, f ′ satisfies 0 < c′ ≤ 1, d′ ≥ 0, e′ ≥ 0,
0 < f ′ ≤ 1 componentwise and⎡

⎢⎢⎣
K∏
j=1

c′j −
K∑
j=1

d′j

−
K∑
j=1

ej
K∏
j=1

f ′
j

⎤
⎥⎥⎦u =

⎡
⎢⎢⎣

K+1∏
j=2

cj −
K+1∑
j=2

dj

−
K+1∑
j=2

ej
K+1∏
j=2

fj

⎤
⎥⎥⎦u

≥

⎡
⎢⎢⎣

K+1∏
j=1

cj −
K+1∑
j=1

dj

−
K+1∑
j=1

ej
K+1∏
j=1

fj

⎤
⎥⎥⎦u

> 0.

Apply the induction hypothesis to obtain that[
c′j −d′j
−e′j f ′

j

]
· · ·

[
c′K −d′K
−e′K f ′

K

]
u > 0

for j = 1, . . . ,K, i.e., (23) holds for j = 2, . . . ,K + 1.
Next prove that (23) holds for j = 1. The idea is still to

construct some c′, d′, e′, f ′ ∈ R
K and apply the induction

hypothesis. The construction is

c′ =(c1c2, c3, . . . , cK+1)

d′ =(d1 + d2, d3, . . . , dK+1)

e′ =(e1 + e2, e3, . . . , eK+1)

f ′ =(f1f2, f3, . . . , fK+1).

Clearly, c′, d′, e′, f ′ satisfies 0 < c′ ≤ 1, d′ ≥ 0, e′ ≥ 0,
0 < f ′ ≤ 1 componentwise and⎡

⎢⎢⎣
K∏
j=1

c′j −
K∑
j=1

d′j

−
K∑
j=1

e′j
K∏
j=1

f ′
j

⎤
⎥⎥⎦u=

⎡
⎢⎢⎣

K+1∏
j=1

cj −
K+1∑
j=1

dj

−
K+1∑
j=1

ej
K+1∏
j=1

fj

⎤
⎥⎥⎦u>0.
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Apply the induction hypothesis to obtain

v′2 :=

[
c′2 −d′2
−e′2 f ′

2

]
· · ·

[
c′K −d′K
−e′K f ′

K

]
u > 0

v′1 :=

[
c′1 −d′1
−e′1 f1

]
· · ·

[
c′K −d′K
−e′K f ′

K

]
u > 0.

It follows that:[
c1 −d1
−e1 f1

]
· · ·

[
cK+1 −dK+1

−eK+1 fK+1

]
u

=

[
c1 −d1
−e1 f1

] [
c2 −d2
−e2 f2

]
v′2

=

[
c1c2 + d1e2 −c1d2 − d1f2
−e1c2 − f1e2 f1f2 + e1d2

]
v′2

≥
[

c1c2 −d2 − d1
−e1 − e2 f1f2

]
v′2

=

[
c′1 −d′1
−e′1 f ′

1

]
v′2

= v′1 > 0

i.e., (23) holds for j = 1.
To this end, we have proved that (23) holds for j =

1, . . . ,K + 1, i.e., Lemma 4 also holds for i = K + 1.

According to i) and ii), Lemma 4 holds for i ≥ 1. �
Proof of Claim 7: Fix an arbitrary l ∈ L, and assume lk = k

for k = 0, . . . , nl without loss of generality. Fix an arbitrary
t ∈ {1, . . . , nl}, then it suffices to prove that As · · ·At−1ut >
0 for s = 1, . . . , t. Denote rk := rk,k−1 and Sk := Sk,k−1 for
k = 1, . . . , t for brevity.

Substitute (i, j) = (k, k − 1) in (21) to obtain⎡
⎢⎢⎣

k−1∏
s=1

(
1− 2rsP̂

+
s

v
s

)
−

k−1∑
s=1

2rsQ̂
+
s

v
s

−
k−1∑
s=1

2xsP̂
+
s

v
s

k−1∏
s=1

(
1− 2xsQ̂

+
s

v
s

)
⎤
⎥⎥⎦
[
rk
xk

]
> 0 (24)

for k = 1, . . . , t. Hence

k−1∏
s=1

(
1− 2rsP̂

+
s

vs

)
rk >

k−1∑
s=1

2rsQ̂
+
s (q)

vs
xk ≥ 0

for k = 1, . . . , t. It follows that 1− 2rkP̂
+
k /vk > 0 for k = 1,

. . . , t− 1. Similarly, 1− 2xkQ̂
+
k /vk > 0 for k = 1, . . . , t− 1.

Then, substitute k = t in (24) and apply Lemma 4 to obtain[
1− 2rsP̂

+
s

v
s

− 2rsQ̂
+
s

v
s

− 2xsP̂
+
s

v
s

1− 2xsQ̂
+
s

v
s

]

· · ·

⎡
⎣ 1− 2rt−1P̂

+
t−1

(p)

vt−1
− 2rt−1Q̂

+
t−1

(q)

vt−1

− 2xt−1P̂
+
t−1

(p)

vt−1
1− 2xt−1Q̂

+
t−1

(p)

vt−1

⎤
⎦[

rt
xt

]
> 0

for s = 1, . . . , t, i.e., As · · ·At−1ut > 0 for s = 1, . . . , t. This
completes the proof of Claim 7. �
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