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Abstract—The feeder reconfiguration problem chooses the
on/off status of the switches in a distribution network in order to
minimize a certain cost such as power loss. It is a mixed integer
nonlinear program and hence hard to solve. In this paper we pro-
pose a heuristic algorithm that is based on the recently developed
convex relaxation of the AC optimal power flow problem. The
algorithm is computationally efficient and scales linearly with the
number of redundant lines. It requires neither parameter tuning
nor initialization for different networks. It successfully computes
an optimal configuration on all four networks we have tested.
Moreover we have proved that the algorithm solves the feeder
reconfiguration problem optimally under certain conditions for
the case where only a single redundant line needs to be opened.
We also propose a more computationally efficient algorithm and
show that it incurs a loss in optimality of less than 3% on the
four test networks.

Index Terms—Power Distribution, Nonlinear systems, Power
system control, Feeder reconfiguration

I. INTRODUCTION

APrimary distribution system consists of buses, distribu-
tion lines, and (sectionalizing and tie) switches that can

be opened or closed. There are two types of buses. Substation
buses (or just substations) are connected to a transmission
network from which they receive bulk power, and load buses1

that receive power from the substation buses. During normal
operation the switches are configured so that

1) There is no loop in the network.
2) Each load bus is connected to a single substation.
Hence, there is a tree component rooted at each substation

and we refer to each such component as a feeder. The optimal
feeder reconfiguration (OFR) problem seeks to alter the on/off
status of these switches, for the purpose of load balancing or
loss minimization subject to the above two requirements, e.g.,
[2]–[5]. See also a survey in [6] for many early papers and
references to some recent work in [7].

The OFR problem is a combinatorial (on/off status of
switches) optimization problem with nonlinear constraints
(power flow equations) and can generally be NP-hard. Various
algorithms have been developed to solve the OFR problems.

A preliminary version has appeared in [1].
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Following the convention in [7], they roughly fall into two
categories: formal methods and heuristic methods.

Formal Methods: Formal methods solve the OFR problem
using existing optimization approach. They usually require
significant amount of computation time. In [5], the problem
is solved using a simulated annealing technique where the
problem is formulated as a multi-objective mixed integer con-
strained optimization. In [8], ordinal optimization is proposed
to reduce the computational burden through order compari-
son and goal softening. In [9], the problem is solved using
generalized Benders decompositions. In [10], a mixed integer
linear programming solver is applied to solve the problem after
linearizaiton of the power flow equations. In [7], the problem
is formulated as a mixed integer nonlinear program which is
then solved as a mixed integer convex program through the
second-order cone program (SOCP) relaxation.

Heuristic Methods: Heuristic methods exploit structural
properties to solve the OFR problem. They are usually more
computationally efficient than formal methods. In [3], an
“iterative branch exchange approach” is applied to OFR.
The network is initialized with a feasible topology. At each
iteration, an opened switch is closed and a closed switch is
opened to reduce the cost and maintain the radial structure.
The algorithm stops once a local minimum is reached, i.e. for
each currently opened switch, closing it and opening another
switch will not further decrease the cost. See [4], [11] for
further developments on this approach. This approach has
the advantage that the intermediate configuration is always
feasible, hence we can terminate the algorithm at any iteration
to obtain a feasible solution. However, the performance is
sensitive to the initial configuration and sometimes it takes
too many iterations for the algorithm to terminate. A different
heuristic approach, first proposed in [2] termed “successive
branch reduction approach” in this paper, assumes all the
switches are initially closed and they are sequentially opened
based on a given criteria until a radial configuration is reached.
This approach has two major advantages: 1) unlike the “itera-
tive branch exchange approach”, no initialization is required;
and 2) the number of iterations are bounded by the number
of redundant lines, which is usually small in practice. Some
developments on this approach include relaxing the binary
variable representing the status on the switch [12], [13] and
generalization to unbalanced network based on a constant
current model [14].

Optimal feeder reconfiguration is a mixed integer nonlinear
optimization problem and therefore NP-hard in general. To
overcome the first difficulty (mixed integer optimization), we
propose a heuristic approach that only involves solving a small



Fig. 1: Notations.

number of AC optimal power flow (OPF) problems and no
mixed-integer optimization. We theoretically show that the
proposed heuristic can obtain the global optimal solution under
certain assumptions. Indeed global optimal configurations can
always be found on the four practical networks in our simula-
tions. To overcome the second difficulty (nonconvexity of AC
OPF), we build on the recent development of SOCP relaxation
of AC OPF. The effectiveness of this new approach is illus-
trated both through simulations of standard test systems and
mathematical analysis under certain assumptions. Specifically
the main contributions of the paper are twofold.

First, we propose an algorithm to optimize the “successive
branch reduction approach”. The algorithm uses a branch flow
model introduced in [15], [16] for radial systems and exploit
the recent development on solving the optimal power flow
problem through convex relaxation [17]–[19]; see a tutorial
in [20], [21] for more details. The algorithm has three major
advantages:

1) Efficient: the complexity is linear in the number redun-
dant lines that need to be opened.

2) Accurate: The algorithm is proved to solve OFR opti-
mally under certain assumptions in the case where there
is a single line that needs to be opened. Simulations on
four practical networks show that it can find a globally
optimal solution in the general case as well.

3) Hassle free: There are no parameters and initialization
that need to be tuned for different networks.

Second, we simplify the above algorithm into one that has
a constant complexity, i.e. the time complexity is independent
of the number of redundant lines. Simulations on the same
four practical networks show that the loss in optimality is less
than 3%.

The rest of the paper is organized as follows. We formulate
in Section II the optimal feeder reconfiguration problem. We
propose and analyze in Section III our algorithms to solve
the OFR problem when there is only one redundant line. The
algorithms are extended in Section IV to general networks with
arbitrary number of redundant lines. The simulation results are
presented in Section V. We conclude in Section VI. All proofs
are relegated to the Appendix.

II. MODEL AND PROBLEM FORMULATION

In this section, we define the optimal feeder reconfiguration
(OFR) problem in a distribution network. We then review the
optimal power flow (OPF) problem and how to solve it through
the second-order cone programming (SOCP) relaxation.

A. Notations

We model a distribution network by a directed graph
G(N , E), where N represents the set of buses and E the set

of lines connecting the buses in N . We associate a direction
with each line (i, j) ∈ E represented by an ordered pair of
nodes in N . There are two types of buses. Substation buses (or
just substations) are connected to a transmission network from
which they receive bulk power, and load buses that receive
power from the substations. LetNs denote the set of substation
buses, Nl denote the set of load buses and Ns ∪Nl = N .

For each bus i ∈ N , let Vi = |Vi|eiθi be its complex voltage
and vi := |Vi|2 be its magnitude squared. Let si = pi + iqi be
its net power injection which is defined as generation minus
consumption. For each line (i, j) ∈ E , let zij = rij + ixij be
its complex impedance. Let Iij be the complex branch current
from buses i to j and `ij := |Iij |2 be its magnitude squared.
Let Sij = Pij + iQij be the branch power flow from buses i
to j. For each line (i, j) ∈ E , define Sji in terms of Sij and
Iij by Sji := −Sij +`ijzij . Hence −Sji represents the power
received by bus j from bus i. The notations are illustrated in
Fig. 1. A variable without a subscript denotes a column vector
with appropriate components, as summarized below.

s := (si, i ∈ N ) v := (vi, i ∈ N )
S := (Sij , (i, j) ∈ E) ` := (`ij , (i, j) ∈ E)

Given a graph G(N , E). For each node i ∈ N , let

C(i) := {(i, j) | (i, j) ∈ E} ∪ {(j, i) | (j, i) ∈ E},

which represents the set of lines with one end at i. For any
E ′ ⊆ E , a path exists between two nodes i, j ∈ N in graph
G(N , E ′) if and only if there is a collection of edges in E ′
that connect node i and j. Denote

D1
E′ :=# of paths in G(N , E ′) among buses in Ns (1)

D2
E′ :=# of loops in G(N , E ′) (2)

DE′ :=D1
E′ +D2

E′ (3)

Given two real vectors x, y ∈ Rn, x ≤ y means xi ≤ yi
for 1 ≤ i ≤ n and x < y means xi < yi for at least one
component. The Pareto front (See [22] for more properties) of
a compact set A ⊆ Rn is defined as

O(A) := {x ∈ A | @x̃ ∈ A \ {x} such that x̃ ≤ x} (4)

B. Problem formulation

There are sectionalizing or tie switches on the lines that can
be opened or closed. Optimal feeder reconfiguration (OFR) is
the problem of reconfiguring the switches to optimize certain
objective subject to the topological constraints, power flow
equations and operational constraints on voltage magnitudes
and power injections. Typical objective includes optimizing
total line loss, real power injection from the substations or
load balancing. Let Γ(s) denote the objective function. Then
• to minimize total line loss, we can set

Γ(s) =
∑
i∈N

Re(si) =
∑
i∈N

pi

• to minimize real power injection from the substations, we
can set

Γ(s) =
∑
i∈Ns

Re(si) =
∑
i∈Ns

pi



• to balance loads for substations, we can set

Γ(s) =
∑
i∈Ns

|si|2 =
∑
i∈Ns

(p2
i + q2

i )

There are two topological constraints on configuring the
switches during normal operations:

1) Each load bus is connected to a single substation.
2) There is no loop in the network.

Any subset of lines whose switches can be closed concurrently
to satisfy both 1) and 2) is defined as a feasible configuration.
Let ST := {ET | G(N , ET ) satisfies 1) and 2)}, which repre-
sents the set of all feasible configurations. When |Ns| = 1,
i.e. there is only one substation, ST consists of the set of ET
such that G(N , ET ) is a spanning tree of G(N , E).

We adopt the branch flow model first proposed in [15], [16]
which has the phase angles of voltages and currents eliminated
and uses only the variables x := (s, S, `, v). For any E ′ ⊆ E ,
let x(E ′) represent the projection of x on graph G(N , E ′),i.e.
x(E ′) collects all the variables in x except the branch power
Sij and branch current `ij for (i, j) ∈ E \E ′. The variables in
x(E ′) satisfy:

si = −
∑

(k,i)∈E′
(Ski − `kizki) +

∑
(i,j)∈E′

Sij , i ∈ N (5a)

vj = vi − 2Re(zijSij) + `ij |zij |2, (i, j) ∈ E ′ (5b)

`ij =
|Sij |2

vi
, (i, j) ∈ E ′ (5c)

Given a vector x(E ′) that satisfies (5), the phase angles of
the voltages and currents can be uniquely determined if there
is no loop in G(N , E ′). This is important for us since there is
no loop in any feasible configurations ET ∈ ST , and therefore
this relaxed model (5) is equivalent to the full AC power flow
model; See [18, section III-A] for details.

In addition, there are also operational constraints on the
power injection and voltage magnitude at each bus, i.e.
• Power injection constraints: for each bus i ∈ N

si ∈ {p+ iq | p
i
≤ p ≤ pi, qi ≤ q ≤ qi}. (6a)

• Voltage magnitude constraints: for each bus i ∈ N

vi ≤ vi ≤ vi (6b)

For instance, if the voltage magnitude at each bus is allowed
to deviate by 5% from its nominal value, then vi = 0.952 and
vi = 1.052.

For any configuration E ′ ⊆ E , let X(E ′) := {x(E ′) |
x(E ′) satisfies (5) and (6)}, which represents the feasible set
of the x(E ′), then the OFR problem can be written as

OFR : min
ET∈ST

Γ(s∗(ET )) (7)

where

x∗(ET ) := arg min
x
{Γ(s) s.t. x(ET ) ∈ X(ET )} (8)

Different configurations ET are implemented by different
switch settings. OFR is difficult to solve due to the nonlinear
feasible set X(ET ) for a given configuration ET and the

discrete nature of ET . Before developing algorithms to solve
OFR, we first review the optimal power flow (OPF) problem,
on which our algorithms are based.

C. OPF and SOCP relaxation

The OPF problem seeks to optimize certain objective, e.g.
total line loss or real power injection from the substations,
subject to power flow equations (5) and operational constraints
(6). Unlike the OFR problem, the OPF problem assumes a
fixed switch configuration, i.e. it does not optimize over the
topology of the network. For any E ′ ⊆ E (E ′ is not required
to be in ST ), the OPF problem is:

OPF-E ′ : min
x∈X(E′)

Γ(s) (9)

Note that the problem (8) is an instance of the OPF problem.
The OPF problem (9) is noncovex due to the equalities in (5c).
This is relaxed to inequalities in [17], [18]:

`ij ≥
|Sij |2

vi
, (i, j) ∈ E ′ (10)

resulting in a (convex) second-order cone program (SOCP):

ROPF-E ′ : min
x∈Xc(E′)

Γ(s) (11)

where

Xc(E ′) := {x(E ′) | x(E ′) satisfies (5a), (5b), (10) and (6)}

is the feasible set after relaxation. Clearly the relaxation ROPF
(11) provides a lower bound for the original OPF problem (9)
since the original feasible set X(E ′) ⊆ Xc(E ′). The relaxation
is called exact if every optimal solution of ROPF attains
equalities in (5c) and hence is also optimal for the original
OPF; see [20], [21] for more details. For a network with
a tree topology, SOCP relaxation is exact under some mild
conditions [18], [19] 2. Throughout this paper, we assume the
SOCP relaxation is always exact. Then we have the following
result of [19, Theorem 3], which will be useful for us.

Theorem 1: Suppose ROPF is exact and the feasible set
is nonempty. Then there exists a unique solution provided the
objective function Γ(s) is convex and nondecreasing in s.

III. NETWORK WITH SINGLE REDUNDANT LINE

In this section we consider the special case where there
is only one redundant line that needs to be opened, i.e.
DE = 1. We develop an algorithm to solve the OFR problem
in this case and prove that the algorithm solves OFR optimally
under certain assumptions. In addition, we simplify the above
algorithm to reduce its computation complexity and incur
negligible loss in optimality. We extend both algorithms to
the general networks in the next section.

2In [23], SOCP relaxation is applied to a bus injection model. However,
these two models are equivalent and SOCP relaxation is exact for the bus
injection model if and only if it is exact for the branch flow model.



(a) |Ns| = 2 and |E| = |N | − 1. (b) |Ns| = 1 and |E| = |N |.

Fig. 2: Possible network topology with one redundant line.

A. Algorithms

When there is only one redundant line that needs to be
opened, there are two possible cases as illustrated in Fig 2.

1) |Ns| = 2 and |E| = |N |−1, i.e. there are two substations
and |N |−1 lines as shown in figure 2a. Then each load
bus is connected to two substations and we need to open
one line from the path between the two substations.

2) |Ns| = 1 and |E| = |N |, i.e. there is one substation and
|E| = |N | lines as in figure 2b. Then there exists a loop
and we need to open one line to break the loop.

The algorithm to solve both cases in Fig. 2 is stated in
Algorithm 1. The basic idea of Algorithm 1 is simple and
we illustrate it using the line network in Fig. 3. For the line
network in Fig. 3, let the buses at the two ends be substation
buses and buses in between be load buses. Then Ns := {0, 0′},
Nl := {1, . . . , n} and N := {0, 1, . . . , n, 0′}. We use n + 1
and 0′ interchangeably for notational convenience.

Algorithm 1 Network with one redundant line

1: E∗T ← E
2: Solve OPF-E with an optima x∗

3: Calculate ê ∈ arg mine{|P ∗e (E∗T )| | DE∗T \e = 0}
4: Denote ê := (n1, n2)
5: if Pê > 0 then
6: e∗ ← arg mine{Γ(p∗(E∗T \ e)) | e ∈ C(n2)}
7: else
8: e∗ ← arg mine{Γ(p∗(E∗T \ e)) | e ∈ C(n1)}
9: end if

10: E∗T ← E∗T \ e∗
11: return E∗T

For the line network shown in Fig. 3, each load bus is
connected to both substation 0 and 0′, thus the set of feasible
configuration is given as

ST := {E \ (k, k + 1) | 1 ≤ k ≤ n},

i.e. each line in E can be opened to create a feasible config-
uration. For each bus k, the set of lines with one end at it is
given as

C(k) =


{(k, k + 1), (k − 1, k)} k 6= 0, n+ 1

{(0, 1)} k = 0

{(n, n+ 1)} k = n+ 1

Fig. 3: A line Network

In Algorithm 1, we first solve OPF-E , which provides an
optimal solution x∗ assuming all the lines are closed. Then we
search for a branch ê, whose branch power flow is minimum
in E . Denote ê = (k, k+1) and the line we will open is based
on the following criteria:

1) Pê > 0 and k = n+ 1: There is only one candidate, i.e.
C(n+ 1) = {(n, n+ 1)} and line (n, n+ 1) is opened.
It means substation 0′ absorbs real power.

2) Pê > 0 and k < n + 1: There are two candidates, i.e.
C(k) = {(k, k+1), (k+1, k+2)}. Either line (k, k+1)
or (k + 1, k + 2) is opened, depending on which gives
a smaller objective value.

3) Pê ≤ 0 and k = 0: There is only one candidate, i.e.
C(0) = {(0, 1)} and line (0, 1) is opened. It means
substation 0 absorbs real power.

4) Pê ≤ 0 and k > 0: There are two candidates, i.e. C(k+
1) = {(k, k + 1), (k − 1, k)}. Either line (k, k + 1) or
(k−1, k) is opened, depending on which gives a smaller
objective value.

The intuition behind Algorithm 1 is that the line which will
be opened is close to the line where there is minimum branch
flow power if we solve the problem assuming all the lines
are closed (OPF-E). Hence, we need to solve two other OPF
problems for comparing the objective of the two candidates
in addition to OPF-E . Indeed, we can directly open the line
with minimum branch power flow to simplify the algorithm
after OPF-E is solved. By doing this, we sacrifice accuracy but
simulation results show that the solution of the corresponding
algorithm incurs a similar cost as that of Algorithm 1. The
simplified algorithm is stated in Algorithm 2.

Algorithm 2 Network with one redundant line (simplified)

1: Solve OPF-E with an optima x∗.
2: Calculate ê ∈ arg mine{|P ∗e | | DE\e = 0}
3: E∗T ← E \ ê
4: return E∗T

B. Performance analysis

We analyze the performance of Algorithm 1, i.e. whether
the configuration E∗T returned by Algorithm 1 is optimal for
OFR. There are two possible cases as illustrated in Fig. 2. Case
(b) can be reduced to case (a) by replacing the substation 0
by two virtual substations 0 and 0′ as shown in Fig. 2a, where
Ns := {0, 0′}, Nl := {1, . . . , n}. Hence, we only need to
focus on case (a). For ease of presentation we only prove the
results for a line network as shown in Fig. 3. They generalize
in a straightforward manner to radial networks as shown in
Fig. 2a. We make several assumptions below for our analysis:

A1 : pi < 0 for i ∈ Nl and pi > 0 for i ∈ Ns.
A2 : vi = vi = 1 for i ∈ N .



A3 : |θi − θj | < arctan(xij/rij) for (i, j) ∈ E .
A4 : The objective function Γ(s) := Γ(p0, p0′) is convex

and increasing of p0, p0′ .
A5 : The feasible set X(E) is compact.

A1 says that only substation buses 0 and 0′ inject real power
while load buses 1, . . . , n absorb real power. A2 says that the
voltage magnitude at each bus is fixed at their nominal value.
A3 bounds the angle difference between adjacent buses.3

A4 says that the objective function is merely a function of
the power injections at two substations. A5 is a technical
assumption that guarantees that our optimization problems are
feasible.

The assumptions A1-A5 may not hold in practice, e.g. A1
is violated when there are distributed generators at some load
buses, A2 is violated when buses have limited reactive power
injection capability. However, we only need A1-A5 to make
precise statements about the performance of Algorithm 1. We
will first explain the intuition before formally stating the result
in Theorem 2.

We now rewrite the OFR problem (7) for the line network
in Fig. 3. Some new notations will be defined, which will only
be used in this section. For any (k, k + 1) ∈ E , let Gk0 and
Gk+1

0′ represent the two subtrees rooted at 0 and 0′ respectively
if line (k, k + 1) is opened. Denote

(pk0 , p
k+1
0′ ) :=

(
p∗0(Ek,k+1

T ), p∗0′(E
k,k+1
T )

)
, (12)

where Ek,k+1
T := E \ (k, k + 1) and x∗(Ek,k+1

T ) is the
optimal solution to a given configuration Ek,k+1

T and defined
in (8). (pk0 , p

k+1
0′ ) represents the minimum power injection at

the substations for the two subtrees Gk0 and Gk+1
0′ after line

(k, k + 1) is opened. Then the OFR problem (7) for the line
network (Fig. 3) can be written equivalently as

min
0≤k≤n

Γ(pk0 , p
k+1
0′ ). (13)

Define an OPF problem:

OPF-Es: f(p0) := min
x∈X(E)

p0′ (14)

s.t. p0 is a given constant

Recall that X(E) is the feasible set of physical variables
given a configuration E and Xc(E) is the convexified X(E).
Let P := {(p0, p0′) | ∃x ∈ X(E)} represent the projection
of X(E) on R2 and Pc := {(p0, p0′) | ∃x ∈ Xc(E)} be the
projection of Xc(E) on R2. By definition of Pareto front in (4),
the exactness of SOCP relaxation implies that O(P) = O(Pc).

Lemma 1: Suppose A4-A5 hold and the SOCP relaxation
is exact. Then

1) (p0, f(p0)) ∈ O(Pc).
2) f(p0) is a strictly convex decreasing function of p0.
By Lemma 1-1), (p0, f(p0)) ∈ O(Pc), hence OPF-E can be

written equivalently as

min Γ(p0, f(p0)), (15)

3Although voltage phase angles θi are relaxed in the relaxed branch flow
model (5), they are uniquely determined by θi − θj = ∠(vi − z∗ijSij) in a
radial network [18].

(a) Intuition under A1-A5. (b) Intuition without A1-A5.

Fig. 4: Intuitions of Algoirthm 1.

In other words, solving OPF-E is equivalent to finding a
point when the level set of Γ(p0, p0′) first hits the curve
(p0, f(p0)) on a two dimensional plane, where the x-axis and
y-axis are the real power injections from substation 0 and 0′,
as shown in Fig. 4. On the other hand, the OFR problem can
be written as (13) and solving OFR is equivalent to find a
point when the level set of Γ(p0, p0′) first hits one point in
{(pk0 , pk+1

0′ ) | 0 ≤ k ≤ n} on the two dimentional plane.
Suppose A1-A5 hold, all the feasible points (pk0 , p

k+1
0′ ) locate

exactly on the curve (p0, f(p0)) as shown in Fig. 4a. Thus, we
can obtain exactly the optimal solution to OFR by checking
the points (pk0 , p

k+1
0′ ) adjacent to the optimal solution to OPF-

E , which is performed in Algorithm 1. The result is formally
stated in Theorem 2.

Theorem 2: Suppose A1–A5 hold. Then the configuration
E∗T returned by Algorithm 1 is optimal for OFR (7).

Remark: Theorem 2 shows that Algorithm 1 computes an
optimal solution of OFR under assumptions A1-A5, which
may not hold in practice. Without assuming A1-A5, (pk0 , p

k+1
0′ )

does not locate exactly on the curve (p0, f(p0)) as shown in
Fig. 4b. Thus, the points (pk0 , p

k+1
0′ ) adjacent to the optimal

solution to OPF-E may not be optimal for OFR. Indeed,
we can create artificial examples to show that Algorithm 1
fails to find a global optimal configuration. However, the sub-
optimality gap is usually small since the points (pk0 , p

k+1
0′ )

are close to the the curve (p0, f(p0)). And global optimal
configuration can always be found in our simulations on four
practical networks.

IV. GENERAL NETWORK CONFIGURATION

In section III, we propose two algorithms to solve the OFR
problem assuming there is only one redundant line that needs
to be open. In this section, we will extend both Algorithms
1 and 2 to general networks where there may be more than
one redundant lines that need to be opened. As before, one
of the algorithms has a higher accuracy but requires more
computation (Algorithm 3) and the other lower accuracy but
less computation (Algorithm 4).

Loosely speaking, Algorithm 1 consists of the following
procedure:

1) Solve OPF problem assuming all the lines are closed.
2) Find the line ê with minimum branch power flow.
3) Check line ê against the lines adjacent to line ê and the

minimum of those lines as a solution.



For a general network, there are multiple lines that need to
be simultaneously open. Then we generalize Algorithm 1 in
the following manner: We iterate the procedure in Algorithm
1 and remove one line from E at the end of each iteration,
resulting in a different OPF problem to solve for the next
iteration. There are |E|− |Nl| redundant lines and hence |E|−
|Nl| iterations. The algorithm is formally stated in Algorithm
3.

Algorithm 3 General Network

1: E∗T ← E
2: while DE∗T > 0 do
3: Solve OPF-E∗T with optima x∗(E∗T )
4: Calculate ê ∈ arg mine{|P ∗e (E∗T )| | DE∗T \e < DE∗T }
5: Denote ê := (n1, n2)
6: if Pê > 0 then
7: e∗ ← arg mine{Γ(p∗(E∗T \ e)) | e ∈ C(n2) ∩ E∗T }
8: else
9: e∗ ← arg mine{Γ(p∗(E∗T \ e)) | e ∈ C(n1) ∩ E∗T }

10: end if
11: E∗T ← E∗T \ e∗
12: end while
13: return E∗T

Similarly, we can mimic Algorithm 2 and have an efficient
algorithm which merely solve one OPF problem. Algorithm 2
consists of the following procedure:

1) Solve OPF problem assuming all the lines are closed.
2) Open the line ê with minimum branch power flow.
We generalize Algorithm 2 in the following manner. We

solve only one OPF problem OPF-E , which assumes all the
lines are closed. Then we sequentially choose one line with
the smallest branch power flow in the remaining closed lines
merely based on the solution to OPF-E . Our simulations show
that the simplification leads to negligible loss in optimality
compared to Algorithm 3. The algorithm is stated in Algorithm
4.

Algorithm 4 General Network (simplified)

1: E∗T ← E
2: Solve OPF-E ; let x∗ be an optimal solution.
3: while DE∗T > 0 do
4: Calculate ê ∈ arg mine{|P ∗e | | DE∗T \e < DE∗T }
5: E∗T ← E∗T \ ê
6: end while
7: return E∗T

Remark: Algorithm 3 scales linearly with the number of
redundant lines and Algorithm 4 is independent of the number
of redundant lines. For large distribution system, solving
one OPF problem requires significant amount of time and
Algorithm 4 can greatly reduce the computation time if there
are many redundant lines.

V. SIMULATIONS

In this section we present examples to illustrate the effec-
tiveness of the algorithms proposed in section IV (The algo-
rithms in section III are special cases). We used a Macbook Pro

with 2.9 Ghz Intel Core i7 and 8GB memory. The algorithms
are implemented in Matlab 2013a and the OPF problem is
solved using Gurobi optimization solver.

We test the algorithms on four practical distribution net-
works. Test network 1 is from Taiwan Power Company and
the network data is taken from [24]. Test network 2 is from
Brazil and the network data is taken from [25]. There are no
renewable generations in these two networks. Test networks
3 and 4 are from Southern California Edition with renewable
generations and taken from [17], [26]. Since the original data
on these two networks consist of a single substation and
contain no loop, we make several modifications to add loops
in order to test our algorithms. The modified circuit diagram
and network data of test network 3 are shown in Fig. 5 and
Table I. The modified circuit diagram and network data of test
network 4 are shown in Fig. 6 and Table II.

In the simulations, the voltage magnitude of the substations
is fixed at 1 p.u. The voltage magnitudes at all other buses
are allowed to vary within [0.95, 1.05]p.u. Our objective is
to minimize the power loss, i.e. Γ(s) :=

∑
i∈N pi. For

all four networks, Algorithm 3 always computes an optimal
configuration and Algorithm 4 computes a configuration with
only up to 3% loss in optimality.

A. Case I: Tai-83 Bus System [24]

The Tai-83 bus system consists of 96 lines and 13 of them
needs to be kept open to satisfy the configuration requirement.
This network has been tested in [7], [24], [27]–[30] using
different approaches. In [7], Jabr, et. al show that opening
lines (7,13,34,39,42,55,62,72,83,86,89,90,92) gives an optimal
solution using mixed integer convex programming solver. The
results are summarized in Table III, where we also show the
loss reduction4, which represents the relative saving on power
loss due to reconfiguration.

We run both Algorithm 3 and 4 for this network. Al-
gorithm 3 returns the same optimal solution as [7], [29],
[30]. However, Algorithm 3 is computationally very efficient
since we only solved 39 OPF problems, which take 0.94
seconds on a laptop (MacBook). Algorithm 4 opens lines
(7,13,33,39,42,63,72,82,84,86,89,90,92) with a power loss of
471.39KW. Compared with the optimal solution of 469.88KW,
the difference in the power loss is less than 0.4% but we only
need to solve 1 OPF problem, which takes 0.024 second on a
laptop.

B. Case II: Brazil-135 Bus System [25]

The Brazil-135 bus system consists of 156 lines and 21
of them needs to be kept open to satisfy the configuration
requirement. This network has been tested in [7], [25], [30]
using different approaches. In [7], Jabr, et. al show that open-
ing lines (7,35,51,90,96,106,118, 126,135,137,138,141,142,
144,145,146,147,148, 150,151,155) gives an optimal solution
using mixed integer convex programming solver. The results
are summarized in Table IV.

4loss reduction=1− power loss (after reconfiguration)
power loss (before reconfiguration)



TABLE I: Network of Fig. 5: Line impedances, peak spot load KVA, Capacitors and PV generation’s nameplate ratings.

Network Data
Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Nameplate
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVAR No. Capacity

1 2 0.259 0.808 8 41 0.107 0.031 21 22 0.198 0.046 1 30 34 0.2
2 13 0 0 8 35 0.076 0.015 22 23 0 0 11 0.67 36 0.27 13 1.5MW
2 3 0.031 0.092 8 9 0.031 0.031 27 31 0.046 0.015 12 0.45 38 0.45 17 0.4MW
3 4 0.046 0.092 9 10 0.015 0.015 27 28 0.107 0.031 14 0.89 39 1.34 19 1.5 MW
3 14 0.092 0.031 9 42 0.153 0.046 28 29 0.107 0.031 16 0.07 40 0.13 23 1 MW
3 15 0.214 0.046 10 11 0.107 0.076 29 30 0.061 0.015 18 0.67 41 0.67 24 2 MW
4 20 0.336 0.061 10 46 0.229 0.122 32 33 0.046 0.015 21 0.45 42 0.13
4 5 0.107 0.183 11 47 0.031 0.015 33 34 0.031 0.015 22 2.23 44 0.45 Shunt Capacitors
5 26 0.061 0.015 11 12 0.076 0.046 35 36 0.076 0.015 25 0.45 45 0.2 Bus Nameplate
5 6 0.015 0.031 15 18 0.046 0.015 35 37 0.076 0.046 26 0.2 46 0.45 No. Mvar
6 27 0.168 0.061 15 16 0.107 0.015 35 38 0.107 0.015 28 0.13
6 7 0.031 0.046 16 17 0 0 42 43 0.061 0.015 29 0.13 Vbase= 12.35kv 1 6
7 32 0.076 0.015 18 19 0 0 43 44 0.061 0.015 30 0.2 Sbase = 1MW 3 1.2
7 8 0.015 0.015 20 21 0.122 0.092 43 45 0.061 0.015 31 0.07 37 1.8
8 40 0.046 0.015 20 25 0.214 0.046 1 12 0.076 0.146 32 0.13 47 1.8
8 39 0.244 0.046 21 24 0 0 1 30 0.116 0.146 33 0.27

TABLE II: Network of Fig. 6: Line impedances, peak spot load KVA, Capacitors and PV generation’s nameplate ratings.

Network Data
Line Data Line Data Line Data Load Data Load Data Load Data

From To R X From To R X From To R X Bus Peak Bus Peak Bus Peak
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. MVA

1 2 0.160 0.388 20 21 0.251 0.096 39 40 2.349 0.964 3 0.057 29 0.044 52 0.315
2 3 0.824 0.315 21 22 1.818 0.695 34 41 0.115 0.278 5 0.121 31 0.053 54 0.061
2 4 0.144 0.349 20 23 0.225 0.542 41 42 0.159 0.384 6 0.049 32 0.223 55 0.055
4 5 1.026 0.421 23 24 0.127 0.028 42 43 0.934 0.383 7 0.053 33 0.123 56 0.130
4 6 0.741 0.466 23 25 0.284 0.687 42 44 0.506 0.163 8 0.047 34 0.067 Shunt Cap
4 7 0.528 0.468 25 26 0.171 0.414 42 45 0.095 0.195 9 0.068 35 0.094 Bus Mvar
7 8 0.358 0.314 26 27 0.414 0.386 42 46 1.915 0.769 10 0.048 36 0.097 19 0.6
8 9 2.032 0.798 27 28 0.210 0.196 41 47 0.157 0.379 11 0.067 37 0.281 21 0.6
8 10 0.502 0.441 28 29 0.395 0.369 47 48 1.641 0.670 12 0.094 38 0.117 30 0.6
10 11 0.372 0.327 29 30 0.248 0.232 47 49 0.081 0.196 14 0.057 39 0.131 53 0.6
11 12 1.431 0.999 30 31 0.279 0.260 49 50 1.727 0.709 16 0.053 40 0.030 Photovoltaic
11 13 0.429 0.377 26 32 0.205 0.495 49 51 0.112 0.270 17 0.057 41 0.046 Bus Capacity
13 14 0.671 0.257 32 33 0.263 0.073 51 52 0.674 0.275 18 0.112 42 0.054
13 15 0.457 0.401 32 34 0.071 0.171 51 53 0.070 0.170 19 0.087 43 0.083 45 5MW
15 16 1.008 0.385 34 35 0.625 0.273 53 54 2.041 0.780 22 0.063 44 0.057
15 17 0.153 0.134 34 36 0.510 0.209 53 55 0.813 0.334 24 0.135 46 0.134 Vbase = 12kV
17 18 0.971 0.722 36 37 2.018 0.829 53 56 0.141 0.340 25 0.100 47 0.045 Sbase = 1MVA
18 19 1.885 0.721 34 38 1.062 0.406 1 32 0.113 0.434 27 0.048 48 0.196 Zbase = 144Ω
4 20 0.138 0.334 38 39 0.610 0.238 53 57 0.1 0.3 28 0.038 50 0.045
19 58 0.09 0.2

Algorithm 3 computes the same optimal solution as [7],
[30]. However, Algorithm 3 is computationally very efficient
since we only solved 63 OPF problems, which take 2.2
seconds on a laptop. Algorithm 4 opens lines (35,51,55,
84,90,106,126,135,136,137,138,141,143,144,145,147,148,152,
150,151,155) with a power loss of 288.01KW. Compared
with the optimal solution of 280.19KW, the difference in the
power loss is less than 2.8% but we only need to solve 1
OPF problem, which takes 0.055 second on a laptop.

C. Case III: SCE-47 Bus System

TABLE III: Summary on Tai-83 Bus System

Method Opened Lines Losses (KW) Loss
reduction

[24], [27], [28] 7,13,34,39,41,55,62,
72,83,86,89,90,92 471.08 11.45%

[7], [29], [30] 7,13,34,39,42,55,62,
72,83,86,89,90,92 469.88 11.68%

Algorithm 3 7,13,34,39,42,55,62,
72,83,86,89,90,92 469.88 11.68%

Algorithm 4 7,13,33,39,42,63,72,
82,84,86,89,90,92 471.39 11.40%
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Fig. 5: A modified SCE 47-bus feeder. The blue bar (1)
represents the substation bus, the red dots (13, 17, 19, 23, 24)
represent buses with PV panels, and the other dots represent
load buses without PV panels.

The original data for the SCE 47-bus system does not
contain loops, so we added two lines to connect the substation
bus 1 to two load buses 12 and 30 respectively. Hence there
are 49 lines and 2 of them needs to be open in the modified
feeder. In addition to the loads, there are 5 PV panels and their
power injections can be controlled. The nameplates for these
5 PV panels can be found in Table I.
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Fig. 6: A modified SCE 56-bus feeder. The blue bars (1,
57, 58) represent the substation buses and the red dot (45)
represents the bus with PV panels.

There are in total 95 feasible configurations. We first cal-
culate the objective value of all the 95 configurations. The
best configuration is opening lines {(1, 2), (8, 9)}, resulting in
32.6KW power loss. The average power loss is 63.7KW and
the worst configuration’s power loss is 136.9KW across the 95
configurations. Hence the average power loss is almost twice
as bad as the minimum power loss and the worst configuration
is 4 times as bad as the minimum!

TABLE IV: Summary on Brazil-135 Bus System

Method Opened Lines Losses (KW) Loss re-
duction

[25]

51,106,136,137,138,139,
141,142,143,144,145,
146,147,148,149,150,
151,152,154,155,156

285.77 10.80%

[7], [30]

7,35,51,90,96,106,118,
126,135,137,138,141,142,
144,145,146,147,148,
150,151,155

280.19 12.54%

Algorithm 3

7,35,51,90,96,106,118,
126,135,137,138,141,142,
144,145,146,147,148,
150,151,155

280.19 12.54%

Algorithm 4

35,51,55,84,90,106,126,
135,136,137,138,141,143,
144,145,147,148,152,150,
151,155

288.01 10.10%

Both Algorithms 3 and 4 find the optimal configuration
for this network. Algorithm 3 solves 4 OPF problems (0.055
second) and Algorithm 4 solves 1 OPF problem (0.014 sec-
ond). Compared with solving one OPF problem for each
configuration to obtain the optimal solution, both algorithms
are much more efficient without any loss in optimality.

D. Case IV: SCE-56 Bus System

In contrast to the SCE-47 system, where there are 5 rela-
tively small PV panels, the SCE 56-bus system consists of a
single big PV system with a capacity of 5MW. We make the
following modifications:
• We add a line between bus 1 and bus 32 to create a loop.
• We assume there are two additional substations (bus 57

and 58): attached to substation 19 and 53, respectively.
There are 59 lines and 3 lines need to be kept open. There
are in total 724 feasible configurations. We first calculate

the objective value of all the 724 configurations. The best
configuration is opening lines {(11, 13), (23, 25), (41, 47)},
resulting in 9.89KW power loss. The average power loss is
23.4KW and the worst power loss is 211KW across the 724
configurations.

We run both Algorithm 3 and 4 for this network. Al-
gorithm 3 computes the optimal solution by opening lines
{(11, 13), (23, 25), (41, 47)} but solves just 9 OPF prob-
lems, which take 0.14 seconds. Algorithm 4 opens lines
{(11, 13), (23, 25), (47, 49)} with a power loss of 9.92KW.
Compared with the optimal solution of 9.89KW, the difference
in the power loss is less than 0.3% but Algorithm 4 only needs
to solve one OPF problem, which takes 0.015 seconds.

VI. CONCLUSION

We have proposed two algorithms with different tradeoffs
on efficiency and accuracy for feeder reconfiguration, based
on the SOCP relaxation of OPF. We have proved that the
algorithm solves OFR optimally under certain assumptions for
a special case where there is only a single redundant line that
needs to be opened, and have shown that the gap is very small.
We have also demonstrated the effectiveness of our algorithms
through simulations on four practical networks.
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APPENDIX A
PROOF OF LEMMA 1

We will first show that (p0, f(p0)) ∈ O(Pc). Since O(Pc) =
O(P), it is equivalent to prove (p0, f(p0)) ∈ O(P).

By property of Pareto Front [22], for each point (p0, p0′) ∈
O(Pc) = O(P), there exists a convex nondecreasing function
Γ∗ : R2 → R such that (p0, p0′) is an optima for OPF-E .
Given any (p0, p̂0′) ∈ O(P), let Γ∗(p0, p0′) be the objective
function such that (p0, p̂0′) solves OPF-E . Since Γ∗(p0, p0′) is
a nondecreasing function, OPF-E can be written equivalently
as

min
p0

Γ∗(p0, p0′) s.t. p0′ = f(p0)

Therefore, at optimality, f(p0) = p̂0′ and (p0, f(p0)) ∈ O(P).
Next, we prove f(p0) is a strictly convex decreasing func-

tion of p0.
Lemma 2: Let A be a compact and convex set in R2. Define

g(x) := y for any (x, y) ∈ O(A). Then y = g(x) is a convex
decreasing function of x for (x, y) ∈ O(A).

Proof: We first show g(x) is a decreasing function and
then show g(x) is also convex.

Let (x1, g(x1)) and (x2, g(x2)) be two points in O(A).
Without loss of generality, assume x1 > x2. If g(x1) ≥ g(x2),
it violates the fact that (x1, g(x1)) ∈ O(A) and hence g(x1) <
g(x2), which means that g(x) is a decreasing function.

Next, we will show g(·) is convex. Recall that A is a
compact set, we have (x1, g(x1)), (x2, g(x2)) ∈ O(A) ⊆ A.
A is also a convex set, thus (x1+x2

2 , g(x1)+g(x2)
2 ) ∈ A. By

definition of Pareto front,

g(
x1 + x2

2
) = inf

(
x1+x2

2 ,y)∈A
{y} ≤ g(x1) + g(x2)

2
,

which shows g(x) is a convex function.
Since Xc(G) is convex and compact by A5, its projection

on a two dimensional space Pc is also compact and convex.
Note that (p0, f(p0)) ∈ O(Pc) by part 1) of Lemma 1, we
have part 2).

APPENDIX B
PROOF OF THEOREM 2

For the line network in Fig. 3, denote ê = (k̂, k̂+1) (Line 4
in Algorithm 1). Without loss of generality, assume Pk̂,k̂+1 >
0 and we need to show that e∗ is the optimal line to open for
OFR, i.e. either (k̂, k̂+ 1) or (k̂+ 1, k̂+ 2) will be opened for
the optimal solution.

Based on Theorem 1, there exists a unique solution x∗

for any OPF problems with convex nondecreasing objective
function. Hence there is also a unique solution x∗ to OPF-
Es for any feasible real power injection p0 at substation 0. In
other words, x∗ is a function of p0 and let x(p0) := (s∗, S∗)
represents the solution to OPF-Es with real power injection
p0 at substation 0. We skip v and ` in x since vi is fixed by
A2 and `k,k+1 is uniquely determined by Sk,k+1 according to
(5c). By Maximum theorem, x(p0) is a continuous function
of p0.

Lemma 3: Suppose A2-A5 hold. Then Pk,k+1(p0) is an
increasing function of p0 for all (k, k + 1) ∈ E .

Proof: See Appendix C for the proof.
Since Pk,k+1(p0) is an increasing and continuous function

of p0, there exists a unique p0 to Pk,k+1(p0) = 0 and denote
p0(k) := P−1

k,k+1(0), i.e. Pk,k+1(p0(k)) = 0.
Lemma 4: Suppose A1-A5 hold. Then p0(k) < p0(k + 1)

for 0 ≤ k ≤ n.
Proof: By A1 (pi < 0 for i ∈ Nl) and (5a), we have for

0 ≤ k < n,

Pk,k+1(p0) = Pk+1,k+2(p0)− pk+1 > Pk+1,k+2(p0).

which means

0 = Pk,k+1(p0(k)) > Pk+1,k+2(p0(k)).



By Lemma 3, Pk+1,k+2(p0) is a increasing function of p0,
hence p0(k) < p0(k + 1).

Recall that (pk0 , p
k+1
0′ ) is the minimal real power injection

for subtrees Gk0 and Gk+1
0′ respectively. Our next result shows

that (pk0 , p
k+1
0′ ) = (p0(k), f(p0(k))).

Lemma 5: Suppose A2-A5 hold and the voltage magnitude
of all buses are fixed at the same value. Then

(pk0 , p
k+1
0′ ) = (p0(k), f(p0(k))) (k, k + 1) ∈ E

Proof: By definition, Pk,k+1(p0(k). Based on (5b)-(5c),

2xk,k+1Qk,k+1(p0(k)) = `k,k+1(p0(k))|zk,k+1|2

`k,k+1(p0(k)) =
Q2
k,k+1(p0(k))

vk

if vk = vk+1. Solving the above two equations gives
Qk,k+1(p0(k)) = 0. Hence, p0(k) is a feasible power injection
for subtree Gk0 and it means pk0 ≤ p0(k). Next, we will show
that p0(k) is the smallest possible power injection for Gk0 .
Suppose we have pk0 < p0(k), then (pk0 , f(p0(k))) is a feasible
power injection for network G with pk0 < p0(k). It contradicts
(p0(k), f(p0(k))) ∈ O(P) (Lemma 1). Therefore we have
pk0 = p0(k) and pk+1

0′ = f(p0(k)).
By Lemma 1, (p0(k), f(p0(k))) ∈ O(P). Then Lemma 5

means the minimal power injection for each partition of graph
G locates exactly on the Pareto front of the feasible power
injection region of OPF-E . Therefore the OFR problem (13)
is equivalent to the following problem:

min
0≤k≤n

Γ(pk0 , p
k+1
0′ ) = min

0≤k≤n
Γ(p0(k), f(p0(k))), (16)

whose minimizer is denoted by k∗.
On the other hand, by (15), OPF-E can be rewritten as

min
p0∈Ip0

Γ(p0, f(p0)),

whose unique minimizer is denoted by p∗0.
Lemma 6: Suppose A1-A5 and Pk̂,k̂+1(p∗0) > 0 hold. Then,

p0(k̂) ≤ p∗0 ≤ p0(k̂ + 1)

Proof: By our assumption at the beginning of the proof,
Pk̂,k̂+1(p∗0) > 0, which implies that p0(k̂) ≤ p∗0. since
Pk̂,k̂+1(p0) is a increasing function of p0 based on Lemma
3. On the other hand, by A1

Pk̂,k̂+1(p∗0) = Pk̂+1,k̂+2(p∗0)− pk̂+1(p∗0) > Pk̂+1,k̂+2(p∗0),

implying that Pk̂+1,k̂+2(p∗0) < 0. Otherwise
|Pk̂,k̂+1(p∗0)| > |Pk̂+1,k̂+2(p∗0)|, contradicting that
(k̂, k̂ + 1) = arg mine{|P ∗e (E)|}. Therefore, p∗0 ≤ p0(k̂ + 1)
since Pk̂+1,k̂+2(p0) is an increasing function of p0 by Lemma
3.

Considering Lemma 4 and 6, we have

p0(k) ≤ p∗0 k ≤ k̂
p0(k) > p∗0 k > k̂

Since Γ(p0, f(p0)) is a convex function with minimizer p∗0,
we have for k1 ≤ k2 ≤ k̂

Γ(p0(k1), f(p0(k1))) ≥ Γ(p0(k2), f(p0(k2))) ≥ Γ(p∗0, f(p∗0)).

For k1 ≥ k2 ≥ k̂,

Γ(p0(k1), f(p0(k1))) ≤ Γ(p0(k2), f(p0(k2))) ≤ Γ(p∗0, f(p∗0))

which indicates the OFR problem (16) can be reduced to

min
0≤k≤n

Γ(p0(k), f(p0(k))) = min
k=k̂,k̂+1

Γ(p0(k), f(p0(k))),

which is solved in line 6 of Algorithm 1. Hence Algorithm 1
solves the optimal solution to OFR.

APPENDIX C
PROOF OF LEMMA 3

For a line (k, k + 1) between two buses k and k + 1
with fixed voltage magnitude, (Sk,k+1, `k,k+1) are governed
by (5b)-(5c) and Qk,k+1, `k,k+1 can be united solved given
a Pk,k+1 if A3 holds. Denote φ(Pk,k+1) := −Pk,k+1 =
Pk,k+1 − `k,k+1rk,k+1 and we have the following result.

Lemma 7: Suppose A2 and A3 hold, φ(Pk,k+1) is a concave
increasing function of Pk,k+1 for (k, k + 1) ∈ E .

Proof: By (5c), we have `k,k+1 = (P 2
k,k+1 +Q2

k,k+1)/vi
and substitute it in φ(Pk,k+1), we have

φ(Pk,k+1) = Pk,k+1 −
rk,k+1

vi

(
P 2
k,k+1 +Q2

k,k+1

)
.

The relation between Pk,k+1 and Qk,k+1 is governed by (5b).
Let θk,k+1 := θi − θj and then Pk,k+1 and Qk,k+1 can be
written as

Pk,k+1 =
virk,k+1

|zk,k+1|2
+

√
vivj
|zk,k+1|2

sin(θk,k+1 − βk,k+1)

Qk,k+1 =
vixk,k+1

|zk,k+1|2
−
√

vivj
|zk,k+1|2

cos(θk,k+1 − βk,k+1),

where βk,k+1 := arctan rk,k+1/xk,k+1. Substitute them into
φ(Pk,k+1), we obtain

φ(Pk,k+1) = − vjrk,k+1

|zk,k+1|2
+

√
vivj
|zk,k+1|2

sin(θk,k+1 + βk,k+1).

Take derivative of φ(Pk,k+1) with respect to Pk,k+1, we have

dφ(Pk,k+1)

dPk,k+1
=

cos(θk,k+1 + βk,k+1)

cos(θk,k+1 − βk,k+1)
.

which is always positive by assumption A3 that |θk,k+1| <
arctanxk,k+1/rk,k+1. Furthermore,

d2φ(Pk,k+1)

dP 2
k,k+1

= −

√
|zk,k+1|2
vivj

sin 2βk,k+1

cos3(θk,k+1 − βk,k+1)
,

which is always negative by assumption A3 that |θk,k+1| <
arctanxk,k+1/rk,k+1. Thus, φ(Pk,k+1) is a concave increas-
ing function of Pk,k+1.

Lemma 7 means if the one end of the line increases its real
power injection on the line, the other end should receive more
real power under assumption A2 and A3. We now show that
Pk,k+1(p0) is a nondecreasing function of p0 for all (k, k +
1) ∈ E .

Suppose Pk,k+1(p0) is not a nondecreasing function of p0

at p∗0 for a line (k, k + 1) ∈ E , then either C1 or C2 below
will hold for arbitrary small ε > 0,



C1: ∃p0 ∈ (p0, p
∗
0 + ε) such that Pk,k+1(p0) < Pk,k+1(p∗0).

C2: ∃p0 ∈ (p0 − ε, p∗0) such that Pk,k+1(p0) > Pk,k+1(p∗0).
We will show by contradiction that (p∗0, f(p∗0)) 6∈ O(P) in

this case, which violates Lemma 1. Assume without loss of
generality that Pi,i+1(p0) is a nondecreasing function of p0

for 0 ≤ i < k.
Case I: qk(p∗0) > q

k
. Suppose C1 holds, then there ex-

ists a monotone decreasing sequence p
(m)
0 ↓ p∗0 such that

{Pk,k+1(p
(m)
0 ),m ∈ N} is a monotone increasing sequence

that converges to Pk,k+1(p∗0) because x(p0) is continuous over
p0. By power balance equation (5b) at bus k, for any m, we
have

pk(p
(m)
0 ;G) = Pk,k+1(p

(m)
0 )− φ(Pk−1,k(p

(m)
0 ))

< Pk,k+1(p
(m+1)
0 )− φ(Pk−1,k(p

(m+1)
0 ))

= pk(p
(m+1)
0 )

Thus {pk(p
(m)
0 ), n ∈ N} is a monotone increasing sequence

that converges to pk(p∗0). We now construct a point x̃ =
(P̃ , Q̃, p̃, q̃) as follows. First, pick up (P̃k,k+1, Q̃k,k+1, p̃k, q̃k)

such that p̃k ∈ {pk(p
(m)
0 ;G),m ∈ N}, q̃k ∈ (q

k
, qk(p∗0)) and

they satisfy the following equations:

P̃k,k+1 =Pk,k+1(p∗0)− pk(p∗0) + p̃k (17a)

Q̃k,k+1 =Qk,k+1(p∗0)− qk(p∗0) + q̃k (17b)

vk+1 =vk − 2(rk,k+1P̃k,k+1 + xk,k+1Q̃k,k+1) (17c)

+
P̃ 2
k,k+1 + Q̃2

k,k+1

vk
|zk,k+1|2 (17d)

The existence of (P̃k,k+1, Q̃k,k+1, p̃k, q̃k) is guaranteed by the
following two facts:
• pk(p

(m)
0 ) is a monotone increasing sequence that con-

verges to pk(p∗0).
• q̃k is a continuous decreasing function of p̃k if they satisfy

(17).
Since P̃k,k+1 ∈ [Pk,k+1(p

(1)
0 ), Pk,k+1(p∗0)] and x(p0) are

continuous over p0, then there exists a p′0 ∈ [p∗0, p
(1)
0 ] such

that Sk,k+1(p′0) = S̃k,k+1.
Next, we will construct the feasible physical variable for

i 6= k. For 0 ≤ i < k, let s̃i = si(p
∗
0) and S̃i,i+1 = Si,i+1(p∗0).

For k < i ≤ n, let s̃i = si(p
′
0) and S̃i,i+1 = Si,i+1(p′0).

Clearly that x̃ ∈ X(E) with (p∗0, f(p′0)) as the real power
injection at substation 0 and 0′. However, f(p′0) < f(p∗0),
which contradicts (p∗0, f(p∗0)) ∈ O(P).
Case II: qk(p∗0) < qk. Similar approach can be used to show
C2 does not hold by contradiction.

So far, we have shown that Pk,k+1(p0) is non-decreasing
either on its left or right neighborhood. Thus Pk,k+1(p0) is
non-decreasing of p0 if q

k
< qk because P (p0) is a continuous

function of p0. The case where q
k

= qk can be covered by
taking limitation of the case of q

k
< qk.

Qiuyu Peng received his B.S. degree in Electri-
cal Engineering from Shanghai Jiaotong University,
China in 2011. He is currently working towards the
Ph.D. degree in Electrical Engineering at California
Institute of Technology, Pasadena, USA.

His research interests are in the distributed opti-
mization and control for power system and commu-
nication networks.

Yujie Tang received the Bachelor?s degree in Elec-
tronic Engineering from Tsinghua University, Bei-
jing, China, in 2013. He is currently working toward
the Master’s and Ph.D. degrees in Electrical Engi-
neering at the California Institute of Technology.

His current research interests include optimization
and control of distribution networks.

Steven H. Low (F’08) is a Professor of the Depart-
ment of Computing & Mathematical Sciences and
the Department of Electrical Engineering at Caltech.
Before that, he was with AT&T Bell Laboratories,
Murray Hill, NJ, and the University of Melbourne,
Australia. He was a co-recipient of IEEE best pa-
per awards, the R&D 100 Award, and an Okawa
Foundation Research Grant. He is on the Technical
Advisory Board of Southern California Edison and
was a member of the Networking and Information
Technology Technical Advisory Group for the US

President’s Council of Advisors on Science and Technology (PCAST) in
2006. He is a Senior Editor of the IEEE Transactions on Control of Network
Systems and the IEEE Transactions on Network Science & Engineering, is
on the editorial boards of NOW Foundations and Trends in Networking, and
in Electric Energy Systems, as well as Journal on Sustainable Energy, Grids
and Networks. He received his B.S. from Cornell and PhD from Berkeley,
both in EE.


