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Abstract— The feeder reconfiguration problem chooses the
on/off status of the switches in a distribution network in order to
minimize a certain cost such as power loss. It is a mixed integer
nonlinear program and hence hard to solve. A popular heuristic
search consists of repeated application of branch exchange,
where some loads are transferred from one feeder to another
feeder while maintaining the radial structure of the network,
until no load transfer can further reduce the cost. Optimizing
each branch exchange step is itself a mixed integer nonlinear
program. In this paper we propose an efficient algorithm for
optimizing a branch exchange step. It uses an AC power flow
model and is based on the recently developed convex relaxation
of optimal power flow. We provide a bound on the gap between
the optimal cost and that of our solution. We prove that our
algorithm is optimal when the voltage magnitudes are the same
at all buses. We illustrate the effectiveness of our algorithm
through the simulation of real-world distribution feeders.

I. INTRODUCTION

A. Motivation

Primary distribution systems have sectionalizing switches
that connect line sections and tie switches that connect two
primary feeders, two substation buses, or loop-type laterals.
In normal operation these switches are configured such that a
distribution network is acyclic and every load is connected to
exactly one substation. The topology of the network can be
reconfigured by changing the on/off status of these switches,
for the purpose of load balancing, loss minimization, or
service restoration; see e.g., [1]–[4] and an early survey in
[5].

For instance when a single feeder is overloaded, a cur-
rently open tie switch can be closed to connect the feeder to
another substation. Since this will create a loop or connect
some loads to two substations, a currently closed sectional-
izing switch will be opened to maintain a radial topology
in which every load is connected to a single substation.
Following [3] we call this a “branch exchange” where the
goal is to select the pair of switches for closing/opening
that achieves the best load balancing. More generally one
can optimize a certain objective over the topology of the
entire distribution network by choosing the on/off status of
all the switches, effectively selecting a best spanning tree
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among all possible spanning trees of the network topology.
Even though the problem of minimum spanning tree has
been well studied [6], the problem here is different. Unlike
the standard minimum spanning tree problem where the
link costs are fixed and the minimization is only over the
topology, in our case, the link costs result from an optimal
power flow (OPF) problem that must be solved for each
candidate spanning tree. This is therefore a mixed integer
nonlinear program and can generally be NP-hard. As a result
a large majority of proposed solutions are heuristic in nature
[5]; see also references in [7] to some recent works. A
heuristic search method is proposed in [2], [3] which we
discuss in more detail below. The problem is formulated as a
multi-objective mixed integer constrained optimization in [4]
and solved using a simulated annealing technique. Ordinal
optimization is proposed in [7] to reduce the computational
burden through order comparison and goal softening. Unlike
these heuristic methods, an interesting exhaustive search
method is proposed in [8] to compute a globally optimal
solution under the assumption that loads are constant-current,
instead of constant-power as often assumed in load flow
analysis. Starting from an initial spanning tree, the proposed
method applies the branch exchange step in a clever way
to generate all spanning trees exactly once and efficiently
compute the power loss for each tree recursively in order to
find a tree with the minimum loss. A constant-current load
model is also used in [9] where the optimization problem
becomes a mixed integer linear program. A global optimality
condition is derived and an algorithm is provided that attains
global optimality under certain conditions.

In this paper we study a single branch exchange step first
proposed in [3]. Each step transfers some loads from one
feeder to another if it reduces the overall cost. An efficient
solution for a single branch exchange step is important
because, as suggested in [3], a heuristic approach for optimal
network reconfiguration consists of repeated application of
branch exchanges until no load transfer between two feeders
can further decrease the cost. This simple greedy algorithm
yields a local optimal. The key challenge is to estimate the
cost reduction for each load transfer. Specifically once a
currently open tie switch has been selected for closing, the
issue is to determine which one of several currently closed
sectionalizing switches should be opened that will provide
the largest cost reduction. Each candidate sectionalizing
switch (together with the given tie switch) transform the
existing spanning tree into a new spanning tree. A naive ap-
proach will solve an OPF for each of the candidate spanning



Fig. 1: A distribution network. Solid Lines are closed and
dash lines are open. The red arrows are load buses.

tree and choose one that has the smallest cost. This may be
prohibitive both because the number of candidate spanning
trees can be large and because OPF is itself a nonconvex
problem and therefore hard to solve. The focus of [2], [3],
[10] is to develop much more efficient ways to approximately
evaluate the cost reduction by each candidate tree without
solving the full power flow equations. The objective of [2] is
to minimize loss and it derives a closed-form expression for
approximate loss reduction of a candidate tree. This avoids
load flow calculation altogether. A new branch flow model
for distribution systems is introduced in [3] that allows a
recursive computation of cost reduction by a candidate tree.
This model is extended to unbalanced systems in [10].

B. Summary

We make two contributions to the solution of branch
exchange. First we propose a new algorithm to determine
the sectionalizing switch whose opening will yield the largest
cost reduction, once a tie switch has been selected for clos-
ing. We use the full AC power flow model introduced in [11]
for radial systems, but unlike [3], [4], [10], we solve them
through the method of convex relaxation developed recently
in [12], [13]. Moreover the algorithm requires solving at most
three OPF problems regardless of the number of candidate
spanning trees. Second we bound the gap between the cost of
our algorithm and the optimal cost. We prove that when the
voltage magnitude of each bus is the same our algorithm
is optimal. We illustrate our algorithm on two Southern
California Edition (SCE) distribution feeders, and in both
cases, our algorithm has found the optimal branch exchange.

The rest of the paper is organized as follows. We formulate
the optimal feeder reconfiguration problem in Section II
and propose an algorithm to solve it in Section III. The
performance of the algorithm is analyzed in Section IV. The
simulation results on SCE distribution circuits are given in
Section V. We conclude in Section VI. All the proof are
skipped due to space limitation and can be found in [14].

II. MODEL AND PROBLEM FORMULATION

A. Feeder reconfiguration

A distribution system consists of buses, distribution lines,
and (sectionalizing and tie) switches that can be opened or
closed. There are two types of buses. Substation buses (or
just substations) are connected to a transmission network
from which they receive bulk power, and load buses that
receive power from the substation buses. During normal
operation the switches are configured so that

(a) Two feeders served by different
substations.

(b) Two feeders served by the
same substation.

Fig. 2: Feeders after step 1 of a branch exchange.

1) The network is radial, i.e., has a tree topology.
2) Each bus is connected to a single substation.

We will refer to the subtree that is rooted at each substation
bus as a feeder; hence each feeder is served by a single
substation. Optimal feeder reconfiguration is the problem of
reconfiguring the switches to minimize a certain cost subject
to the two constraints above, in addition to operational
constraints on voltage magnitudes, power injections, and line
limits.

We assume that there is an on/off switch on each line (i.e.,
modeling the subsystem between each pair of switches as a
single line), and focus on an iterative greedy algorithm first
proposed in [3]. We illustrate this algorithm on the simple
network shown in Fig. 1 where solid and dash lines represent
closed and open switches respectively.

There are 3 feeders, each of which connects to one
substation, SS1, SS2, or SS3. Suppose lines 4 and 11 are
open in the current iteration. In each iteration one of the
open switches is selected and closed, say, that on line 4.
This joins two feeders so that every bus along lines 1 to
6 are now connected to both substations SS1 and SS3. To
restore the property that each bus is connected to a single
substation, we then choose one line among {1, 2, 3, 4, 5, 6}
to open that minimizes the cost. This two-step procedure is
called a branch exchange. This procedure is repeated until
the configuration stabilizes, i.e., the line that is chosen to
open in step two is the original open line selected in step
one, for all open switches. In summary, each iteration of the
algorithm consists of two steps:

1) Chooses a line e1 with an open switch and close the
switch.

2) Identify a line e2 in the two feeders that was joined in
Step 1 to open that minimizes the objective.

The algorithm terminates when e1 = e2 for all the open
switches. The greedy search only guarantees a local optimum
since it may terminate before searching through all spanning
trees. In this paper we propose an efficient and accurate
method to accomplish Step 2 in each branch exchange
(iteration). We will use the nonlinear (AC) power flow
model and apply convex relaxations developed recently for
its solution. Most existing algorithms that we are aware of
perform Step 2 based on linearized power flow equations and
the assumption that the power injection at all the buses are
fixed, [2], [3]. Linearized power flow (called DC power flow)



Fig. 3: Notations.

model is reasonable in transmission networks but is less so
in distribution networks.

After we close the switch on a line there are two possible
cases (see Fig 2): (1) The two connected feeders are served
by different substations; or (2) The two connected feeders
are served by the same substation. In both cases the switch
on one of the lines needs to be opened. Case (2) can be
reduced to case (1) by replacing the substation 0 by two
virtual substations 0 and 0′ as shown in Fig. 2a.

We now describe our model and formulate the problem
of determining the optimal line to open along the path that
connects two substations.

B. Network model

We consider an AC power flow model where all variables
are complex. A distribution network is denoted by a graph
G(N , E), where nodes in N represent buses and edges in
E represent distribution lines. For each bus i ∈ N , let
Vi = |Vi|eiθi be its complex voltage and vi := |Vi|2 be
its magnitude squared. Let si = pi + iqi be its net power
injection which is defined as generation minus consumption.
We associate a direction with each line (i, j) ∈ E represented
by an ordered pair of nodes in N . For each line (i, j) ∈ E , let
zij = rij + ixij be its complex impedance and yij := 1/zij
its admittance. We have xij > 0 since lines are inductive.
Let Iij be the complex branch current from buses i to j and
`ij := |Iij |2 be its magnitude squared. Let Sij = Pij + iQij
be the branch power flow from buses i to j. For each
line (i, j) ∈ E , define Sji in terms of Sij and Iij by
Sji := −Sij + `ijzij . Hence −Sji represents the power
received by bus j from bus i. The notations are illustrated
in Fig. 3. A variable without a subscript denotes a column
vector with appropriate components, as summarized below.

p := (pi, i ∈ N ) q := (qi, i ∈ N )
P := (Pij , (i, j) ∈ E) Q := (Qij , (i, j) ∈ E)
v := (vi, i ∈ N ) ` := (`ij , (i, j) ∈ E)

In radial network, it suffices to work with a ‘relaxed’
model, first proposed in [11] to model radial network, where
we ignore the phase angles of voltages and currents and
use only the variables x := (p, q, P,Q, `, v). These variables
satisfy:

pi = −
∑

(k,i)∈E

(Pki − `kirki) +
∑

(i,j)∈E

Pij , i ∈ N (1)

qi = −
∑

(k,i)∈E

(Qki − `kixki) +
∑

(i,j)∈E

Qij , i ∈ N (2)

vj = vi − 2(rijPij + xijQij) + `ij |zij |2, (i, j) ∈ E (3)

`ijvi = P 2
ij +Q2

ij , (i, j) ∈ E (4)

Given a vector x that satisfies (1)–(4) the phase angles of
the voltages and currents can be uniquely determined for
a radial network, and therefore this relaxed model (1)–(4)
is equivalent to the full AC power flow model for a radial
network; See [12] for details.

In addition, x must also satisfy the following operational
constraints:
• power injection constraints: for each bus i ∈ N

p
i
≤ pi ≤ pi and q

i
≤ qi ≤ qi (5)

• voltage magnitude constraints: for each bus i ∈ N

vi ≤ vi ≤ vi (6)

• line flow constraints: for each line (i, j) ∈ E

|Sij | ≤ Sij (7)

C. Problem formulation

As described in section II-A, we focus on reconfiguring a
network path where two feeders are served by two different
substations as shown in Fig. 2a. Consider a (connected) tree
network G(N , E). N := {0, 1, . . . , n, 0′} denote the set of
buses, where the two substations are indexed by 0, 0′ and the
load buses are indexed by {1, . . . , n}.

Since G is a tree there is a unique path between any
two nodes in G. For every pair of buses i, j ∈ N let
E(i, j) ⊆ E be the collection of edges on the unique path
between i and j. Given any subgraph G′ of G let xG

′
:=

(pG
′
, qG

′
, PG

′
, QG

′
, `G

′
, vG

′
) denote the set of variables de-

fined on G′ with appropriate dimensions. For notational
simplicity we often ignore the superscript G′ and write
x := (p, q, P,Q, `, v) instead when the meaning is clear
from the context. Given any subgraph G′ of G, let X(G′) :=
{xG′ | xG′

satisfies (1)− (7)} be the feasible set of variables
x defined on G′. In particular, X(G) is the feasible set for
the entire distribution network represented by G.

Given a (connected) tree G(N , E) and a path E(0, 0′) be-
tween node 0 and 0′, denote by Gi0(N0, E0) and Gj0′(N0′ , E0′)
the two subtrees after we remove line (i, j) ∈ E(0, 0′), where
0 ∈ N0 and 0′ ∈ N0′ . The minimum power injections for
Gi0 and Gj0′ are defined as

pi0 := min
x∈X(Gi

0)
p0 (8)

pj0′ := min
x∈X(Gj

0′ )
p0′ (9)

The optimal branch exchange for feeder reconfiguration
problem is defined as:

OFR-branch (OFR): min
(i,j)∈E(0,0′)

Γ(pi0, p
j
0′)

where Γ(p0, p0′) can be any convex increasing cost function.
When Γ(p0, p0′) = p0 + p0′ , our goal is to minimize the
aggregate power injection from the substations. Since p0+p′0
equals the aggregate load (real power consumption) in the
network and the total real power loss, if the loads are fixed,
then minimizing p0 + p′0 also minimizes power loss. For



simplicity we will also refer to OFR-branch as OFR in this
paper.

A naive solution to OFR is to enumerate all the lines
in E(0, 0′) and compare the objective value for each case.
It is inefficient as it requires solving two optimal power
flow (OPF) problems (8) and (9) for each line. This can
be computationally expensive if the size of E(0, 0′) is large.
In the following we will develop an algorithm to solve OFR
that involves solving at most three OPF problems regardless
of the size of E(0, 0′).

We start by briefly describing SOCP (second-order cone
program) relaxation of OPF recently developed in [12], [13].

D. OPF and convex relaxation

The optimal power flow problem seeks to optimize a
certain objective over the feasible set X(G) specified by the
power flow equations (1)-(4) and the operation constraints
(5)-(7):

OPF-G: min
x∈X(G)

Γ(p0, p0′)

It is a non-convex problem due to the quadratic equalities
(4). Relaxing (4) to inequalities:

`ijvi ≥ P 2
ij +Q2

ij (10)

leads to a second order cone program (SOCP) relaxation.
Formally define Xc(G) := {x | x satisfies (1) − (3), (5) −
(7), (10)}. The SOCP relaxation of OPF-G is:

SOPF-G: min
x∈Xc(G)

Γ(p0, p0′)

SOPF-G is convex and can be solved efficiently. Clearly
SOPF-G provides a lower bound for OPF-G since X ⊆ Xc. It
is called exact if every solution x∗ of SOPF-G attains equality
in (10). For radial networks SOCP relaxation is exact under
some mild conditions [12], [13], [15].

Throughout this paper we will assume that the SOCP
relaxation of OPF is always exact. In that case we can solve
SOPF-G and recover an optimal solution to the original non-
convex OPF-G. A similar approach can be applied to the
OPF problems defined in (8) and (9).

III. OPTIMAL FEEDER RECONFIGURATION ALGORITHM

OFR seeks to minimize Γ(p0, p0′) by opening the switch
on a line in E(0, 0′). Let k0, k0′ ∈ N denote the buses such
that (0, k0), (k0′ , 0

′) ∈ E(0, 0′). The algorithm for OFR is
given in Algorithm 1.

The basic idea of Algorithm 1 is simple and we illustrate
it using the line network in Fig. 4. After we solve OPF-G
with x∗:

1) if bus 0 receives positive real power from bus 1 through
line (0, 1), open line (0, 1).

2) if bus 0′ receives positive real power from bus n
through line (n, 0′), open line (n, 0′).

3) if there exists a line (k, k+1) where positive real power
is injected from both ends, open line (k, k + 1).

4) if there exists a bus k that receives positive real power
from both sides, open either line (k−1, k) or (k, k+1).

Algorithm 1: Optimal Feeder Reconfiguration Algorithm
Input: objective Γ(p0, p0′), network constraints
(p, p, q, q, S, v, v).
Output: line e∗.
Solve OPF-G; let x∗ be an optimal solution.

1) P ∗0,k0 ≤ 0: e∗ ← (0, k0).
2) P ∗k0′ ,0′ ≥ 0: e∗ ← (k0′ , 0

′).
3) ∃(k1, k2) ∈ E(0, 0′) such that P ∗k1k2 ≥ 0 and

P ∗k2k1 ≥ 0: e∗ ← (k1, k2).
4) ∃(k1, k2), (k2, k3) ∈ E(0, 0′) such that P ∗k2,k1 ≤ 0

and P ∗k2,k3 ≤ 0. Calculate pk10 , pk20′ , pk20 and pk30′ .

• Γ(pk10 , p
k2
0′ ) ≥ Γ(pk20 , p

k3
0′ ): e∗ ← (k2, k3).

• Γ(pk10 , p
k2
0′ ) < Γ(pk20 , p

k3
0′ ): e∗ ← (k1, k2).

We are interested in the performance of Algorithm 1,
specifically:
• Is the solution x∗ to OPF-G unique and satisfies exactly

one of the cases 1)− 4)?
• Is the line e∗ returned by Algorithm 1 optimal for OFR?

We next state our assumptions and answer these two ques-
tions under those assumptions.

IV. PERFORMANCE OF ALGORITHM 1

For ease of presentation we only prove the results for
a line network as shown in Fig. 4. They generalize in a
straightforward manner to radial networks.

Fig. 4: A line Network

Our analysis is divided into two parts. First we show that,
OPF-G has a unique solution x∗ and it satisfies exactly one of
the cases 1) - 4) in Algorithm 1. This means that Algorithm
1 terminates correctly. Then we prove that the performance
gap between the solution e∗ given by Algorithm 1 and an
optimum of OFR is zero when the voltage magnitude of
every bus is fixed at the same nominal value, and bound the
gap by a small value when the voltage magnitudes are fixed
but different.

A. Assumptions

For the line network in Fig. 4, let the buses at the two
ends be substation buses and buses in between be load buses.
Hence the path between substations 0 and 0′ is E(0, 0′) = E ;
we sometimes use 0′ and n+ 1 interchangeably for ease of
notation. We collect the assumptions we need as follows:

A1 : pk < 0 for 1 ≤ k ≤ n and pk > 0 for k = 0, 0′.
A2 : vk = vk, qk = −q

k
=∞ for k ∈ N .

A3 : |θi − θj | < arctan(xij/rij) for (i, j) ∈ E .
A4 : The feasible set X(G) is compact.

A1 is a key assumption and it says that buses 0 and 0′

are substation buses that inject positive real power while
buses 1, . . . , n are load buses that absorb real power. A2
says that the voltage magnitude at each bus is fixed at



their nominal value. To achieve this we also require that
the reactive power injections are unconstrained. This is a
reasonable approximation for our purpose since there are
Volt/VAR control mechanisms on distribution networks that
maintain voltage magnitudes within a tight range around their
nominal values as demand and supply fluctuate. Our simu-
lation results on real SCE feeders show that the algorithm
also works well without A2. A3 is a technical assumption
and usually satisfied in distribution systems that, together
with A2, guarantees that SOCP relaxation of OPF is exact
[15].1 A4 is an assumption that is satisfied in practice and
guarantees that our optimization problems are feasible.

B. Main results

Algorithm 1 needs to solve up to three OPF problems.
The result of [15] implies that we can solve these problems
through their SOCP relaxation.

Theorem 1: Suppose A2 and A3 hold. Then, for any
subgraph G′ of G (including G itself),

1) SOPF-G′ is exact provided the objective function Γ(p)
is a convex nondecreasing function of p.

2) OPF-G′ has a unique solution provided the objective
function Γ(p) is convex in p.

The next result says that Algorithm 1 terminates correctly
because any optimal solution of OPF-G will satisfy exactly
one of the four cases in Algorithm 1.

Theorem 2: Suppose A1 holds. Given any solutions x∗

of OPF-G, exactly one of the following holds:
C1 : P ∗0,1 ≤ 0.
C2 : P ∗n,0′ ≥ 0.
C3 : ∃!k ∈ N such that P ∗k,k+1 ≥ 0 and P ∗k+1,k ≥ 0.
C4 : ∃!k ∈ N such that P ∗k,k−1 ≤ 0 and P ∗k,k+1 ≤ 0.
When the voltage magnitude of all the buses are fixed at

the same reference value, e.g. 1 p.u., Algorithm 1 finds an
optimal solution to OFR.

Theorem 3: Suppose A1–A4 hold. If the voltage magni-
tudes of all buses are fixed at the same value, then the line
e∗ returned by Algorithm 1 is optimal for OFR.

When the voltage magnitudes are fixed but different at
different buses, Algorithm 1 is not guaranteed to find a global
optimum of OFR. However it still gives an excellent subop-
timal solution. By nearly optimal, it means the suboptimality
gap of Algorithm 1 is negligible.

Define Lk for each line (k, k + 1) ∈ E as sequel.

Lk :=
δv2k rk,k+1/|zk,k+1|2

(vk + vk+1) +

√
(vk + vk+1)2 − δv2k

(
r2k,k+1

x2
k,k+1

+ 1
)

where δvk := vk − vk+1. Lk represents the thermal loss
of line (k, k + 1) when either Pk,k+1 or Pk+1,k is 0.
Conceptually it means all the real power sending from bus
on one end of the line is converted to thermal loss and the
other bus receives 0 real power, namely either Pk,k+1 =

1Although voltage phase angles θi are relaxed in the relaxed branch flow
model (1)-(4), they are uniquely determined by θi − θj = ∠(vi − z∗ijSij)
in a radial network [12].

TABLE I: The aggregate power injection from substation 1
for each configuration

Opened line (1, 2) (2, 4) (4, 20) (20, 23)
Power injection (MW) 3.8857 3.8845 3.8719 3.8718

Opened line (23, 25) (25, 26) (26, 32) (32, 1)
Power injection (MW) 3.8719 3.8721 3.8755 3.9550

`k,k+1rk,k+1 or Pk+1,k = `k,k+1rk,k+1. Then the expression
of Lk = `k,k+1rk,k+1 can be obtained by substituting either
Pk,k+1 = `k,k+1rk,k+1 or Pk+1,k = `k,k+1rk,k+1 into (3)
and (4). Lk is negligible compared to the power consumption
of a load in a distribution system. Therefore the ratio of
these two quantity, defined as Rk := −pk+1/Lk, is usually
quite large. To obtain a suboptimality bound, we also need
to define one OPF problem as follows.

OPF-Gs: f(p0) := min
x∈X(G)

p0′ s.t. p0 is a constant

Let Ip0 := {p0 | ∃x ∈ X(G)} represent the projection of
X(G) on real line. Ip0 is compact since X(G) is compact
by A4. In [14], we show that f(p0) is a strictly convex
decreasing function of p0 under assumption A2-A4. Thus it is
right differentiable and denote its right derivative by f ′+(p0),
which is monotone increasing and right differentiable and
denote its right derivative by f

′′

++(p0). Let

κf := inf
p0∈Ip0

f
′′

++(p0) ≥ 0. (11)

κf represents the minimal value of the curvature on a
compact interval if f(p0) is twice differentiable.

Let R := minRk and κf as defined in (11). Let Γ∗ be
the optimal objective value of OFR and ΓA be the objective
value if we open the line e∗ given by Algorithm 1.

Theorem 4: Suppose A1–A4 hold. Then

Γ∗ ≤ ΓA ≤ Γ∗ + max

{
c20
c0′
,
c20′

c0

}
2

R2κf
,

if Γ(p0, p0′) := c0p0 + c0′p0′ for some positive c0, c0′ .
Remark: R is large, usually on the order of 103, in

a distribution system if there is no renewable generation.
Although it is difficult to estimate the value of κf in
theory, our simulation shows that κf is typically around
0.025MW−1 for a feeder with loop size of 10, thus the
bound is approximately 80W if c0 = c0′ = 1, which is quite
small. Moreover simulations of two SCE distribution circuits
show that Algorithm 1 always finds the global optima of OFR
problem; see section V. Therefore the bound in the theorem,
already negligible, is not always tight.

V. SIMULATION

In this section we present an example to illustrate the
effectiveness of Algorithm 1. The simulation is implemented
using the CVX optimization toolbox [16] in Matlab. We use
a 56-bus SCE distribution feeder whose circuit diagram is
shown in Fig. 5. The network data, including line impedances
and real power demand of loads, are listed in [14, Table II].
Since there is no loop in the original feeder we added a



Fig. 5: A modified SCE 56 bus feeder. Bus 1 is the substation and line (1, 32) is added.

tie line between bus 1 and bus 32, which is assumed to be
initially open.

In our simulation the voltage magnitude of the substation
(bus 1) is fixed at 1 p.u.. We relax the assumption needed for
our analysis that their voltage magnitudes at all other buses
are fixed and allow them to vary within [0.97, 1.03]p.u. The
demand of real power is fixed for each load and described in
[14, Table II]. The reactive power at each bus, which is kept
within 10% of the real power to maintain a power factor of
at least 90%, is a control variable, as in volt/var control.

We use the aggregate power injection as our objec-
tive, Γ(p0, p0′) := p0 + p0′ . It also represents the
power loss in this case since we have fixed real power
demand of each load. Our addition of the line be-
tween buses 1 and 32 creates a loop 1-2-4-20-23-25-
26-32-1 that must be broken by turning off the switch
on one line from {(1, 2), (2, 4), (4, 20), (20, 23), (23, 25),
(25, 26), (26, 32), (32, 1)}. In Table I we list the correspond-
ing aggregate power injection for all the possible configura-
tions. The optimal configuration is to open line (20, 23) at
an optimal cost of 3.8718 MW. After we run Algorithm 1
bus 23 receives real power from both sides and our algorithm
returns line (20, 23), which is the optimal solution to OFR.

Even though the voltage magnitudes in our simulation are
not fixed at the nominal values as assumed in our analysis,
Algorithm 1 still gives the optimal solution to OFR by
solving a convex relaxation of OPF. The underlying reason
is that the voltage magnitude does not vary much between
adjacent buses in real network, hence the performance of the
algorithm is not limited by the assumption of fixed voltage
magnitudes.

We have also tested our algorithm in another SCE 47 bus
distribution feeder and it again yields the optimal solution to
OFR.

VI. CONCLUSION

We have proposed an efficient algorithm to optimize the
branch exchange step in feeder reconfiguration, based on
SOCP relaxation of OPF. We have derived a bound on the
suboptimality gap and argued that it is very small. We have
proved that the algorithm computes an optimal solution when
all voltage magnitudes are the same. We have demonstrated

the effectiveness of our algorithm through simulations of
real-world feeders.
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