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Abstract— We augment existing generator-side primary fre-
quency control with load-side control that are local, ubiquitous,
and continuous. The mechanisms on both the generator and
the load sides are decentralized in that their control decisions
are functions of locally measurable frequency deviations. These
local algorithms interact over the network through nonlinear
power flows. We design the local frequency feedback control
so that any equilibrium point of the closed-loop system is the
solution to an optimization problem that minimizes the total
generation cost and user disutility subject to power balance
across entire network. With Lyapunov method we derive a
sufficient condition for any equilibrium point of the closed-loop
system to be asymptotically stable. A simulation demonstrates
improvement in both the transient and steady-state perfor-
mance over the traditional control only on generators, even
when the total control capacity remains the same.

I. INTRODUCTION
It is important to maintain the frequency of a power system

tightly around its nominal value for the quality of power
delivery and safety of infrastructures. Frequency is mainly
determined by real power imbalance through dynamics of
rotating units in the system, and hence frequency is usually
controlled by adjusting real power injections. Frequency/real
power control is traditionally implemented on the generator
side and usually consists of three different layers that work
at different timescales in concert as described in [1]–[3].
As generation or load fluctuates, the primary frequency
control operates continuously to stop frequency excursion.
Generator-side primary frequency control is also known
as droop control, in which a speed governor adjusts the
generation power based on local frequency feedback. The
secondary frequency control, also known as automatic gen-
eration control (AGC), operates at time steps of several
seconds and adjusts the setpoints of governors in a control
area in a centralized fashion to drive the frequency back
to its nominal value and the inter-area power flows to their
scheduled values. Economic dispatch, also known as the
tertiary control, operates at time steps of several minutes
or up and schedules the output levels of generators that are
online and the power flows.

As a supplement to generator-side frequency control, ubiq-
uitous continuous distributed load participation in frequency
control has started to play a rising role since the last decade
or so. Household appliances such as refrigerators, heaters,
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ventilation systems, air conditioners, and plug-in electric
vehicles can be controlled to help manage power imbalance
and regulate frequency. This idea dates back to the late 1970s
[4], and has been extensively studied recently [5]–[7], with
a particular focus on primary frequency control [8]–[10].
There also have been field trials around the world [11]–[13].
Simulation-based studies and field trials above have shown
significant improvement in performance mainly due to fast-
acting capability of frequency-responsive loads and reduction
in the need for generator reserves with high emissions. In
this paper, we provide a systematic method to jointly design
generator and load-side primary frequency control.

Early work on the design of generator-side primary fre-
quency control focuses on stabilizing multi-machine power
networks [14]–[19]. There were also numerous papers, e.g.,
[20]–[22], on stability analysis of power networks with
linear frequency dependent loads, which laid the foundation
for studying the stability of load-side primary frequency
control. As renewable generation introduces larger and faster
fluctuations in real power and frequency, recent studies
integrate functions traditionally realized by slower-timescale
control, e.g, economic dispatch, with faster-timescale control,
e.g., primary frequency control. Examples of these studies
range from primary and/or secondary frequency control on
the generator side [23]–[28], or the load side [29]–[32], to
microgrids where inverters have similar dynamic behavior
to generators [33], [34]. The control schemes in all these
recent studies are decentralized or distributed, and hence are
scalable to networks with a large number of controllable
endpoints and suitable for deployment in future power grids.

Compared to the work above, our work in this paper (i)
designs primary frequency control jointly on the generator
and load sides, (ii) considers a more realistic generator
model including governor and turbine dynamics, (iii) designs
a completely decentralized control scheme in which every
generator and load makes its decision based on local fre-
quency sensing and its own cost of generation or disutility for
participating in load control, (iv) attains equilibrium points
characterized by an optimization problem called optimal fre-
quency control (OFC), which minimizes the total generation
cost plus total user disutility while maintaining the power
balance across entire network, (v) applies Lyapunov method
to the dynamical network model with nonlinear real power
flows to derive a sufficient condition for asymptotic stability
of equilibrium points, and (vi) does not rely on any specific
network topology like tree [25], [33], [34] or star [24]. We
note that different subsets of (i)–(vi) are also achieved in
some of the papers [14]–[34]. A simulation with a more
realistic model shows that the proposed control improves



both the transient and steady-state frequency, compared with
traditional control on generators only, with the same total
control capacity.

The rest of this paper is organized as follows. Section II
describes a dynamical model of power networks. Section III
formulates the OFC problem which characterizes the desired
equilibria and guides the design of decentralized primary
frequency control. Section IV derives a sufficient condition
for any equilibrium point of the closed-loop system to be
asymptotically stable. Section V is a simulation-based case
study to show the performance of the proposed control.
Section VI concludes the paper and discusses future work.

II. POWER NETWORK MODEL
Let R denote the set of real numbers. For a set N , let

|N | denote its cardinality. A variable without a subscript
usually denotes a vector with appropriate components, e.g.,
ω = (ωj , j ∈ N ) ∈ R|N |. For a, b ∈ R, a ≤ b, the expression
[·]ba denotes max {min{·, b}, a}. For a matrix A, let AT

denote its transpose. For a square matrix A, the expression
A � 0 (A ≺ 0) means it is positive (negative) definite. For a
signal ω(t) of time t, let ω̇ denote its time derivative dω/dt.

We combine the classical structure preserving model in
[20] and the generator speed governor and turbine models
in [1]–[3], [16]–[18]. The power network is modeled as a
graph (N , E) where N = {1, . . . , |N |} is the set of buses
and E ⊆ N × N is the set of lines connecting those
buses. We use (i, j) to denote the line connecting buses
i, j ∈ N , and assume that (N , E) is directed, with an
arbitrary orientation, so that if (i, j) ∈ E then (j, i) 6∈ E .
We use “i : i → j” and “k : j → k” respectively to
denote the set of buses i that are predecessors of bus j
and the set of buses k that are successors of bus j. We
assume without loss of generality that (N , E) is connected,
and make the following assumptions which are well-justified
for transmission networks:
• The lines (i, j) ∈ E are lossless and characterized by

their reactances xij .
• The voltage magnitudes |Vj | of buses j ∈ N are

constants.
• Reactive power injections on buses and reactive power

flows on lines are not considered.
A subset G ∈ N of the buses are fictitious buses repre-

senting the internal of generators. Hence we call G the set of
generators and L := N\G the set of load buses.1 We label the
buses so that G = {1, . . . , |G|} and L = {|G|+ 1, . . . , |N |}.

The voltage phase angle of bus j ∈ N , with respect to the
rotating framework of nominal frequency ω0 = 120π rad/s,
is denoted by θj . Let ωj be the frequency deviation of bus
j from the nominal frequency ω0. Hence we have

θ̇j = ωj j ∈ N . (1)

The system dynamics are described by the swing equations

Mjω̇j = −Djωj + pj − Fj(θ) j ∈ N (2)

1We call all the buses in L load buses without distinguishing between
generator buses (buses connected directly to generators) and actual load
buses, since they are treated in the same way mathematically.

where Mj > 0 for j ∈ G are moments of inertia of generators
and Mj = 0 for j ∈ L, and Dj > 0 for all j ∈ N are
(for j ∈ G) the damping coefficients of generators or (for
j ∈ L) the coefficients of linear frequency dependent loads,
e.g., induction motors. The variable pj denotes the real power
injection to bus j, which is the mechanic power injection to
generator if j ∈ G, and is the negative of real power load if
j ∈ L. The net real power flow out of bus j is

Fj(θ) :=
∑
k:j→k

Yjk sin(θj − θk)

−
∑
i:i→j

Yij sin(θi − θj) j ∈ N (3)

where Yjk :=
|Vj ||Vk|
xjk

are the maximum real power flows on
lines (j, k) ∈ E .

Associated with a generator j ∈ G is a system of governor
and turbine. From [1], their dynamics are described by

ȧj = −
1

τg,j
aj +

1

τg,j
pcj j ∈ G (4)

ṗj = −
1

τb,j
pj +

1

τb,j
aj j ∈ G (5)

where aj is the valve position of the turbine, pcj is the
control command to the generator, and pj , as introduced
above, is the mechanic power injection to the generator.
The time constants τg,j and τb,j characterize respectively
the time-delay in governor action and the approximated fluid
dynamics in the turbine. Traditionally, there is a frequency
feedback term − 1

Rj
ωj added to the right-hand-side of (4),

known as the frequency droop control. Here this term is
merged into pcj to allow for a general form of frequency
feedback control.

Equations (1)–(5) specify a dynamical system with state
variables (θ, ω, aG , pG) where

θ := {θ1, . . . , θ|N |}, ω := {ω1, . . . , ω|N |}
aG := {a1, . . . , a|G|}, pG := {p1, . . . , p|G|}

and input variables (pcG , pL) where

pcG := {pc1, . . . , pc|G|}, pL := {p|G+1|, . . . , p|N |}.

In the sequel, (pcG , pL) are feedback control to be designed
based on local measurements of frequency deviations, i.e.,
(pcG(ω), pL(ω)). Parameters p

j
≤ pj specify the bounds of

the control variables, i.e., p
j
≤ pcj(ω) ≤ pj for j ∈ G, and

p
j
≤ pj(ω) ≤ pj for j ∈ L. Note that if p

j
= pj then

they specify a constant, uncontrollable input on bus j. To
motivate the work below, we first define equilibrium points
for this closed-loop dynamical system.

Definition 1: An equilibrium point of the system (1)–(5)
with control (pcG(ω), pL(ω)), or a closed-loop equilibrium
for short, is (θ∗, ω∗, a∗G , p

∗
G , p

c,∗
G , p∗L), where θ∗ is a vector

function of time and (ω∗, a∗G , p
∗
G , p

c,∗
G , p∗L) are vectors of real



numbers, such that

pc,∗G = pcG(ω
∗), p∗L = pL(ω

∗) (6)
dθ∗j /dt = ω∗j j ∈ N (7)

ω∗i = ω∗j = ω∗ i, j ∈ N 2 (8)
−Djω

∗
j + p∗j − Fj(θ∗) = 0 j ∈ N (9)

p∗j = a∗j = pc,∗j j ∈ G. (10)
In the definition above, (8) ensures constant F (θ∗) at

equilibrium points by (3), and (9)(10) are obtained by
letting right-hand-sides of (2)(4)(5) be zero. From (8), at any
equilibrium point, all the buses are synchronized to the same
frequency. The system typically has multiple equilibrium
points as will be explained in Section IV. We also write
an equilibrium point as (θ∗, ω∗, a∗G , p

c,∗
G , p∗) where p∗ :=

(p∗G , p
∗
L), when we do not have to distinguish between state

variables p∗G and control variables p∗L.

III. DECENTRALIZED PRIMARY FREQUENCY
CONTROL

An initial point of the dynamical system (1)–(5) corre-
sponds to the state of the system at the time of fault-clearance
after a contingency, or the time at which an unscheduled
change in power injection occurs during normal operation.
In either case, it is required that the system trajectory, driven
by primary frequency control (pcG(ω), pL(ω)), converges to
a desired equilibrium point. In this section, we formalize
the criteria for desired equilibrium points by formulating
an optimization problem called optimal frequency control
(OFC), and use OFC to guide the design of control. In
Section IV we will study the stability of the closed-loop
system with the proposed control.

A. Optimal Frequency Control Problem

Our objective is to rebalance power after a disturbance
at a minimum generation cost and user disutility. This is
formalized by requiring any closed-loop equilibrium (p∗, d∗)
to be a solution of the following OFC problem, where d∗j =
Djω

∗
j for j ∈ N .

OFC:

min
p,d

∑
j∈N

(
cj(pj) +

1

2Dj
d2j

)
(11)

subject to
∑
j∈N

(pj − dj) = 0 (12)

p
j
≤ pj ≤ pj j ∈ N . (13)

The term cj(pj) in objective function (11) is generation cost
(if j ∈ G) or user disutility for participating in load control
(if j ∈ L). For simplicity we call cj a cost function for
j ∈ N even if it may be a user disutility function. The term
1

2Dj
d2j implicitly penalizes frequency deviation on bus j at

equilibrium. More detail for the motivation of (11), such as
why the weighting factor of the second term is selected as

2We abuse the notation by using ω∗ to denote both the vector
(ω∗1 , . . . , ω

∗
|N|) and the common value of its components. Its meaning

should be clear from the context.

1
2Dj

, can be found in [30]. The constraint (12) ensures power
balance over entire network, and (13) are bounds on power
injections. These bounds are determined by control capacities
of generators or controllable loads, as well as uncontrollable
power injections as an exogenous input.

We assume Conditions 1 and 2 below throughout this
paper.

Condition 1: OFC is feasible. The cost functions cj are
strictly convex and twice continuously differentiable on
(p
j
, pj).

Remark 1: A load −pj on bus j ∈ L results in a user
utility uj(−pj), and hence the disutility function can be
defined as cj(pj) = −uj(−pj). In the literature on demand
response [35] and economic dispatch [3], [23]–[25], [27],
[34], the user disutility functions or generation cost functions
usually satisfy Condition 1, and in many cases are quadratic
functions. See [30, Sec. III-A] for more references that use
cost functions that satisfy Condition 1.

Condition 2: For any optimal solution (p∗, d∗) of OFC,
the power flow equations

Fj(θ) = p∗j − d∗j j ∈ N (14)

are feasible, i.e., have at least one solution θ∗ ∈ R|N |.
Remark 2: A lot of work, e.g., [36], studies the feasibility

of power flow equations (14), which is beyond the scope of
this paper. As will become clear below, Condition 2 ensures
the existence of a closed-loop equilibrium of the dynamical
system (1)–(5) with the feedback control proposed below.

B. Design of Decentralized Feedback Control

We use OFC to guide our controller design. We now
specify our design and then prove that any resulting closed-
loop equilibrium is the unique solution of the OFC problem.
Similar to [30], we design (pcG(ω), pL(ω)) as

pcj(ωj)=
[
(c′j)

−1(−ωj)
]pj
p
j

j ∈ G (15)

pj(ωj)=
[
(c′j)

−1(−ωj)
]pj
p
j

j ∈ L. (16)

The function (c′j)
−1(·), which is the inverse function of the

derivative of the cost function, is well defined if Condition
1 holds. Note that this control is completely decentralized
in that for every generator and load indexed by j, the
control decision is a function of frequency deviation ωj
measured at its local bus. Only its own cost function cj and
bounds [p

j
, pj ] need to be known. No explicit communication

with other generators and loads is required, nor is any
knowledge of system parameters. Moreover, the following
theorem shows that this design fulfills our objective.

Theorem 1: Suppose Conditions 1 and 2 hold. Then we
have both of the following:

1) There is a unique optimal solution of OFC and its dual.
2) For the system (1)–(5) with control (15)(16),

there exists at least one equilibrium point. Let
(θ∗, ω∗, a∗G , p

c,∗
G , p∗) be any of its equilibrium point(s).

Then (p∗, d∗;ω∗) is the unique optimal solution of
OFC and its dual, where d∗j = Djω

∗ for j ∈ N .



Proof: Denote the variables of the dual of OFC by
(λ, µ+, µ−), where λ ∈ R and µ+ and µ− are both vectors
in R|N |. Since OFC is a feasible (by Condition 1) convex
problem with differentiable objective function and affine
inequality constraints, by [37], Slater’s theorem states that
strong duality holds and there exists a feasible dual optimal
solution. Moreover, a point (p, d;λ, µ+, µ−) is optimal for
OFC and its dual if and only if it satisfies the following
Karus-Kuhn-Tucker (KKT) condition:

c′j(pj) + λ+ µ+
j − µ

−
j = 0 j ∈ N (17)

dj − λDj = 0 j ∈ N (18)∑
j∈N

(pj − dj) = 0 (19)

p
j
≤ pj ≤ pj j ∈ N (20)

µ+
j ≥ 0, µ−j ≥ 0 j ∈ N (21)

µ+
j (pj − pj) = µ−j (pj − pj) = 0 j ∈ N (22)

where (17)(18) are stationarity conditions, (19)(20) are pri-
mal feasibility, (21) is dual feasibility and (22) is comple-
mentary slackness. With (µ+, µ−) eliminated, (17)–(22) are
equivalent to (18)(19) and the following equation

pj =
[
(c′j)

−1(−λ)
]pj
p
j

j ∈ N . (23)

Note that (18)(19)(23) have a unique solution (p0, d0;λ0)
since a primal-dual optimal solution exists and, by Condition
1, the left-hand-side of (19) is a strictly decreasing func-
tion of λ. On the other hand, any closed-loop equilibrium
(θ∗, ω∗, a∗G , p

c,∗
G , p∗), if exists, satisfies

d∗j = Djω
∗ j ∈ N (24)∑

j∈N
(p∗j − d∗j ) = 0 (25)

p∗j =
[
(c′j)

−1(−ω∗)
]pj
p
j

j ∈ N (26)

where (25) results from adding up (9) for all j ∈ N to
eliminate Fj(θ), and (26) is a result of (10) and the control
(15)(16). Hence (p∗, d∗;ω∗) = (p0, d0;λ0) is the unique
solution of (18)(19)(23) and therefore the unique optimal
solution of OFC and its dual (ignoring µ+, µ− which may
not be unique at optimal). Moreover, by Condition 2, there
exists at least one solution θ∗ ∈ R|N | for (14). Therefore
(ω∗t + θ∗, ω∗, a∗G , p

c,∗
G , p∗), where a∗G = pc,∗G = p∗G , is a

closed-loop equilibrium, by Definition 1.
Remark 3: In general ω∗ is not zero, which means the

frequency is not restored to the nominal value at equilibrium.
Recovery to nominal frequency needs secondary frequency
control [1]–[3], which is traditionally centralized within a
control area; see [26], [31], [32], [34] for recent work on
distributed secondary frequency control.

IV. STABILITY OF CLOSED-LOOP EQUILIBRIA

We use Lyapunov method to study the stability of the
closed-loop system, and derive a sufficient condition for
any closed-loop equilibrium to be asymptotically stable. Our
approach for stability analysis is compositional [38], in that

we find Lyapunov function candidates separately for the
network with load control and the generators, and add them
up to form a Lyapunov function.

Theorem 1 implies the uniqueness of (ω∗, a∗G , p
c,∗
G , p∗)

across all the equilibrium points of the system (1)–(5) with
control (15)(16). However, θ∗ may not be unique even if
we ignore any difference by multiples of 2π and regard two
solutions θ∗ and θ̂ to (14) as the same if θ∗j − θ̂j are the same
for all j ∈ N [36]. Due to the possible existence of multiple
closed-loop equilibria, we focus on their local asymptotic
stability. In particular, given any closed-loop equilibrium
(θ∗, ω∗, a∗G , p

c,∗
G , p∗), we derive a sufficient condition for

asymptotic stability, as Conditions 3 and 4 below.

Condition 3:
∣∣θ∗i − θ∗j ∣∣ < π

2 for all (i, j) ∈ E .

Remark 4: Though θ∗j for j ∈ N are functions of time
by Definition 1, their differences θ∗i − θ∗j for all i, j ∈ N
are constant, by (7)(8). In practice Condition 3 is often
considered as a security constraint for power flow solutions
[34]. Indeed it guarantees the asymptotic stability of the
equilibrium (θ∗, ω∗) of the open-loop system (1)–(3) with
constant power input p∗ [20].

Condition 4: For all j ∈ G, there exists a constant Lj
which satisfies 0 ≤ Lj < Dj , such that the generator
controller design pcj(·) in (15) satisfies

|pcj(ωj)− pcj(ω∗)| ≤ Lj |ωj − ω∗|

for all ωj in a neighborhood of ω∗.

Theorem 2: Suppose Conditions 1 and 2 hold so that so
closed-loop equilibria exist. Then any closed-loop equilib-
rium (θ∗, ω∗, a∗G , p

c,∗
G , p∗) of the system (1)–(5) with control

(15)(16) is locally asymptotically stable, if it satisfies Con-
ditions 3 and 4.

Proof: We use the following energy function, which
was used in [20] for stability analysis of the open-loop
system (1)–(3), as part of the Lyapunov function candidate
for our closed-loop system. Given a closed-loop equilibrium
(θ∗, ω∗, a∗G , p

c,∗
G , p∗) which satisfies Conditions 3 and 4, the

energy function is

V0 =
1

2

∑
j∈G

Mj(ωj − ω∗j )2

+
∑

(i,j)∈E

∫ θij

θ∗ij

Yij(sinu− sin θ∗ij)du (27)

where θij := θi − θj . By Condition 3, the integral term for
every (i, j) ∈ E in (27) is positive definite in a neighborhood
of θ∗ij , and is zero only when θij = θ∗ij . For simplicity define
ω̃ := ω − ω∗ and use similar notations for deviations of
other variables from their equilibrium values. Taking time



derivative of (27) along any trajectory of (θ, ω), we have

V̇0 =
∑
j∈G

Mjω̃jω̇j +
∑

(i,j)∈E

Yij(sin θij − sin θ∗ij)(ωi − ωj)

=
∑
j∈N

ω̃j(pj −Djωj − Fj(θ∗)) (28)

= −
∑
j∈N

Djω̃
2
j +

∑
j∈N

ω̃j p̃j (29)

≤ −
∑
j∈L

Djω̃
2
j +

∑
j∈G

(−Djω̃
2
j + ω̃j p̃j) (30)

where the equality in (28) results from (2)(3), the equality
in (29) results from replacing Fj(θ

∗) with p∗j − Djω
∗
j (by

(9)), and the inequality in (30) holds since

ω̃j p̃j = (ωj − ω∗j )(pj(ωj)− pj(ω∗j )) ≤ 0 j ∈ L

where pj(ωj) is a non-increasing function of ωj by (16).
We now study the other parts of the Lyapunov function

candidate for generators j ∈ G. By moving the origin of
(4)(5) to the given closed-loop equilibrium, we have

˙̃yj = Aj ỹj +Bj p̃
c
j j ∈ G (31)

where ỹj := [ãj , p̃j ]
T = [aj − a∗j , pj − p∗j ]

T , and p̃cj :=
pcj(ωj)− pcj(ω∗), and

Aj :=

[
− 1
τg,j

0
1
τb,j

− 1
τb,j

]
Bj :=

[ 1
τg,j

0

]
.

A classical Lyapunov function candidate for the linear system
(31) takes the form

Vj =
1

2
ỹTj Pj ỹj j ∈ G

where Pj is a positive definite matrix. Hence the time
derivative of Vj along any system trajectory is

V̇j =
1

2
ỹTj (PjAj +ATj Pj)ỹj + ỹTj PjBj p̃

c
j j ∈ G. (32)

Since both eigenvalues of Aj are negative, Lyapunov theory
tells us that we can find Pj � 0 such that PjAj+ATj Pj ≺ 0.
Indeed, if for all j ∈ G we can find Pj � 0 such that

V̇j ≤ −αj p̃2j + βjω̃
2
j − γj(ãj + ηj p̃j)

2 j ∈ G (33)

where αj , γj > 0, βj < Dj , ηj is an arbitrary real number,
and 4αj(Dj−βj) > 1, then, by (28)–(30), the time derivative
of Vtotal := V0 +

∑
j∈G Vj satisfies

V̇total ≤ −
∑
j∈L

Djω̃
2
j −

∑
j∈G

γj(ãj + ηj p̃j)
2

+
∑
j∈G

(−(Dj − βj)ω̃2
j + ω̃j p̃j − αj p̃2j )

where the third summation is non-positive and is zero only
when ω̃j = p̃j = 0 for all j ∈ G. It is straightforward
that Vtotal ≥ 0 and V̇total ≤ 0 in a neighborhood of the
given closed-loop equilibrium, and both of them are zero
only at the closed-loop equilibrium. Hence, to prove the
given closed-loop equilibrium is asymptotically stable, it is
sufficient to find Pj � 0 for all j ∈ G such that (33) holds.

We choose Pj to be diagonal with positive entries Pj,11
and Pj,22. To ensure PjAj +ATj Pj ≺ 0, we have

Pj,11
τg,j

>
Pj,22
4τb,j

.

A calculation from (32) gives

V̇j = −
Pj,11
τg,j

ã2j −
Pj,22
τb,j

p̃2j +
Pj,22
τb,j

ãj p̃j +
Pj,11
τg,j

ãj p̃
c
j

= −(Pj,22
τb,j

−
P 2
j,22

4γjτ2b,j
)p̃2j +

P 2
j,11

4τg,j(Pj,11 − γjτg,j)
(p̃cj)

2

−γj
(
ãj −

Pj,22
2γjτb,j

p̃j

)2

−(Pj,11
τg,j

− γj)
(
ãj −

Pj,11 · p̃cj
2(Pj,11 − γjτg,j)

)2

(34)

for arbitrary γj ∈ (
Pj,22

4τb,j
,
Pj,11

τg,j
). By Condition 4 we have

(p̃cj)
2 ≤ L2

j ω̃
2
j in the neighborhood referred to. Take

αj =
Pj,22
τb,j

−
P 2
j,22

4γjτ2b,j
βj =

P 2
j,11L

2
j

4τg,j(Pj,11 − γjτg,j)

ηj = −
Pj,22
2γjτb,j

and then by (34) we have that (33) holds for αj , βj , γj and
ηj which satisfy αj , γj > 0. We still require βj < Dj and
4αj(Dj − βj) > 1. Make the following transformation

ξj =
Pj,22
4τb,j

, σj =
ξj
γj
, zj =

τg,jγj
Pj,11

(35)

so that

ξj > 0, 0 < σj < 1, 0 < zj < 1. (36)

Hence the conditions βj < Dj and 4αj(Dj − βj) > 1
become

Dj −
L2
jξj

4σjzj(1− zj)
> 0 (37)

16ξj(1− σj)

(
Dj −

L2
jξj

4σjzj(1− zj)

)
> 1. (38)

Subject to (36)(37), the maximum of the left-hand-side of
(38) is

D2
j

L2
j

, attained at zj = 1
2 ,

L2
jξj
σj

=
Dj

2 , and σj = 1
2 . By

Condition 4 we have
D2

j

L2
j
> 1, i.e., there exists a (ξj , σj , zj)

that satisfies (36)–(38). Through inverse transformation of
(35), we can find positive definite, diagonal matrices Pj for
all j ∈ G such that (33) holds, which finishes the proof.

Theorem 2 provides a sufficient condition for stability.
Its proof depends on the particular (diagonal) structure of
Pj and the particular form (33) for the bound of the time
derivative of Vj . Hence the condition in Theorem 2 may be
conservative, and it is possible that a closed-loop equilibrium
may still be stable even if Conditions 3 and 4 are not
satisfied.



V. CASE STUDY

We illustrate the performance of the proposed control
through a simulation of the IEEE New England test system
shown in Fig. 1.

Fig. 1. IEEE New England test system [39].

This system has 10 generators and 39 buses, and a total
load of about 60 per unit (pu) where 1 pu represents 100
MVA. Details about this system including parameter values
can be found in Power System Toolbox [39], which we use
to run the simulation in this section. Compared to the model
(2)–(4), the simulation model is more detailed and realistic,
with transient generator dynamics, excitation and flux decay
dynamics, changes in voltage and reactive power over time,
and lossy transmission lines, et cetera.

The primary frequency control of generator or load j
is designed with cost function cj(pj) =

Rj

2 (pj − pset
j )2,

where pset
j is the power injection at the setpoint, an initial

equilibrium point solved from static power flow problem. By
choosing this cost function, we try to minimize the deviations
of power injections from the setpoint, and have the control

pj =
[
pset
j − 1

Rj
ωj

]pj
p
j

from (15)(16) 3. We consider the

following two cases in which the generators and loads have
different control capabilities and hence different [p

j
, pj ]:

1) All the 10 generators have [p
j
, pj ] = [pset

j (1 −
c), pset

j (1 + c)], and all the loads are uncontrollable;
2) Generators 2, 4, 6, 8, 10 (which happen to provide half

of the total generation) have the same bounds as in case
(1). Generators 1, 3, 5, 7, 9 are uncontrollable, and all
the loads have [p

j
, pj ] = [pset

j (1 + c/2), pset
j (1− c/2)],

if we suppose pset
j ≤ 0 for loads j ∈ L.

Hence cases (1) and (2) have the same total control capacity
across the network. Case (1) only has generator control while

3Only the load control pj for j ∈ L is written since the generator control
pcj for j ∈ G takes the same form.

in case (2) the set of generators and the set of loads each
has half of the total control capacity. We select c = 10%,
which implies the total control capacity is about 6 pu. For all
j ∈ N , the feedback gain 1/Rj is selected as 25pset

j , which
is a typical value in practice meaning a frequency change
of 0.04 pu (2.4 Hz) causes the change of power injection
from zero all the way to the setpoint. Note that this control
is the same as frequency droop control, which implies that
indeed frequency droop control implicitly solves an OFC
problem with quadratic cost functions we use here. However,
our controller design is more flexible by allowing a larger
set of cost functions.

In the simulation, the system is initially at the setpoint
with 60 Hz frequency. At time t = 0.5 second, buses 4,
15, 16 each makes 1 pu step change in their real power
consumptions, causing the frequency to drop. Fig. 2 shows
the frequencies of all the 10 generators under the two cases
above, (1) with red and (2) with black. We see in both cases
that frequencies of different generators have relatively small
differences during transient, and are synchronized towards
the new steady-state frequency. Compared with generator-
only control, the combined generator-and-load control im-
proves both the transient and steady-state frequency, even
though the total control capacities in both cases are the same.
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Fig. 2. Frequencies of all the 10 generators under case (1) only generators
are controlled (red) and case (2) both generators and loads are controlled
(black). The total control capacities are the same in these two cases.

VI. CONCLUSION AND FUTURE WORK
We have presented a systematic method to jointly design

generator and load-side primary frequency control, by for-
mulating an optimal frequency control (OFC) problem to
characterize the desired equilibrium points of the closed-
loop system. OFC minimizes the total generation cost and
user disutility subject to power balance over entire network.
The proposed control is completely decentralized, depending
only on local frequency. Stability analysis for the closed-
loop system with Lyapunov method has led to a sufficient
condition for any equilibrium point to be asymptotically
stable. A simulation shows that the combined generator-
and-load control improves both transient and steady-state
frequency, compared to the traditional control on generators
only, even when the total control capacity remains the same.



We have got the stability condition of any closed-loop
equilibrium without characterizing its attraction region, and
particularly the change of attraction region due to closing
the loop. It is an interesting topic for the future. It would
also be useful to understand how conservative the suffi-
cient stability condition in Theorem 2 is and derive less
conservative conditions. Moreover, much work remains to
extend these results to more detailed dynamical models like
those in [22], [39], [40] with flux decay dynamics, time-
varying voltage magnitudes, reactive power flows, and lossy
transmission lines. Finally, we are interested in studying the
performance of the proposed primary frequency control when
it operates jointly with current schemes of secondary and
tertiary control.
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