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Optimal Power Flow in Direct Current Networks
Lingwen Gan and Steven H. Low, Fellow, IEEE

Abstract—The optimal power flow (OPF) problem determines
power generations/demands that minimize a certain objective such
as generation cost or power loss. It is non-convex and NP-hard in
general. In this paper, we study the OPF problem in direct current
(DC) networks. A second-order cone programming (SOCP) relax-
ation is considered for solving the OPF problem.We prove that the
SOCP relaxation is exact if either 1) voltage upper bounds do not
bind; or 2) voltage upper bounds are uniform and power injection
lower bounds are negative. Based on 1), a modified OPF problem
is proposed, whose corresponding SOCP is guaranteed to be exact.
We also prove that SOCP has at most one optimal solution if it is
exact. Finally, we discuss how to improve numerical stability and
how to include line constraints.

Index Terms—Direct current networks, exact relaxation, op-
timal power flow, second-order cone relaxation.

I. INTRODUCTION

D IRECT current (DC) networks (e.g., DC-microgrids)
have the following advantages over alternative current

(AC) networks [1]–[3]. 1) Some devices, e.g., photovoltaic
panels, wind turbines, electric vehicles, electronic appliances,
and fuel cells, are easier integrated with DC networks than
AC networks. These devices are either DC in nature or have a
different frequency than the main grid. 2) DC microgrids are
robust to voltage sags and frequency deviations in the main
grid. This is because DC voltages are easy to stabilize and there
is no frequency synchronization for DC networks. 3) System
efficiency can be higher for DC networks because conversion
losses of inverters can be avoided. This is why modern data
centers use DC networks.
The optimal power flow (OPF) problem determines power

generations/demands that minimize a certain objective such as
generation cost or power loss [4]. It is one of the fundamental
problems in power system operation. This paper focuses on the
OPF problem in DC networks.
The OPF problem is difficult to solve since power flow is gov-

erned by nonlinear physical laws. There are three approaches to
deal with this challenge: 1) approximate the power flow equa-
tions (by linear or easier nonlinear equations); 2) look for local
optima of the OPF problem; and 3) convexify the constraints im-
posed by nonlinear power flow laws. After a brief introduction
of the first two approaches, we will focus on the third approach.
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Power flow equations can be approximated by some linear
equations1 if 1) power losses on the lines are small; 2) voltages
are close to their nominal values; and 3) voltage angle differ-
ences between adjacent buses are small. With the linear power
flow approximation, the OPF problem reduces to a linear pro-
gramming [5]. For transmission networks, the three assump-
tions are satisfied and the approach is widely used in practice.
However, the linear power flow approximation does not con-
sider voltages and reactive power flows, and therefore cannot
be used for applications like voltage regulation and volt/var con-
trol. Besides, the solution may not be implementable since phys-
ical laws are not fully respected. Moreover, for distribution net-
works, power losses on the lines are not negligible and volt-
ages can deviate significantly from their nominal values. Con-
sequently, the linear power flow approximation is not accurate
enough for distribution networks.
A number of algorithms look for local optima of the OPF

problem. These algorithms use nonlinear power flow equations
and therefore 1) can be used in applications like voltage regula-
tion and volt/var control; 2) have physically implementable so-
lutions; 3) apply to both transmission and distribution networks.
Representative algorithms of this kind include successive linear/
quadratic programming [6], trust-region based methods [7], La-
grangian Newton method [8], and interior-point methods [9].
Some of these algorithms, especially those based on Newton-
Ralphson, are quite successful empirically. However, these al-
gorithms may not converge to global optimal solutions.
The convexification approach is the focus of this paper. The

idea is to optimize the OPF objective over a convex superset of
the OPF feasible set (which is nonconvex). The resulting op-
timization problem, referred to as a convex relaxation, can be
solved much more efficiently. Furthermore, if the optimal solu-
tion of a convex relaxation lies in the OPF feasible set, then it
must solve the OPF problem. In such cases, the convex relax-
ation is called exact.
There is a prominent convex relaxation—the semidefinite

programming (SDP) relaxation—for general mesh networks
[10]–[12]. It is obtained by transforming nonlinear power
flow constraints to linear constraints on a positive semidefinite
rank-one matrix, and then removing the rank constraint. A
study on computational efficiency and exactness of the SDP
relaxation can be found in [13]. While the SDP relaxation is
exact for the IEEE 14-, 30-, 57-, and 118-bus test networks
[12], it may not be exact when line constraints are tight [14].
There are three central problems in pursuing the convexifica-

tion approach:
1) Exact relaxation: When can a global optimum of the OPF
problem be obtained by solving its relaxation?

1Known as “DC” linear power flow equations. But this “DC” does not refer
to direct current as described in this paper.
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2) Efficient computation: How to design computationally ef-
ficient algorithms that scale to large problem sizes?

3) Numerical stability: How to attain numerical stability es-
pecially for ill-conditioned problem instances?

Significant effort has been devoted in the literature to address
Problem 1), and sufficient conditions have been derived to guar-
antee the exactness of the SDP relaxation for special networks,
e.g., mesh DC networks [12], [15], and radial AC networks
[16]–[19]. To address Problem 2), sparsity of the network has
been exploited [20] and distributed algorithms have been pro-
posed [21]. In [20], maximum clique decomposition of a chordal
extension of the network is used to take advantage of the fact
that power networks are only “slightly” meshed. In [21], an
ADMM-based distributed algorithm is proposed to solve the
convex relaxation. Much less effort has been devoted to ad-
dress Problem 3). The SDP relaxation requires subtractions of
voltages at neighboring buses, which are numerically close in
practice, and is therefore numerically unstable. An alternative
relaxation is proposed in [18] for radial networks to avoid such
subtractions and improve numerically stability.
Summary of Contributions: The goal of this paper is to pro-

pose a convex relaxation of the OPF problem for DC networks,
study its exactness, and improve its numerical stability. In par-
ticular, contributions of this paper are threefold.
First, we propose a second-order cone programming (SOCP)

relaxation of the OPF problem for DC networks. The SOCP
relaxation exploits network sparsity to improve computational
efficiency of the standard SDP relaxation, but is less likely to be
exact than the SDP relaxation for mesh networks [22].
Second, we prove that the SOCP relaxation is exact if ei-

ther 1) voltage upper bounds do not bind; or 2) voltage upper
bounds are uniform and power injection lower bounds are neg-
ative. In a DC microgrid, voltage upper bounds do not bind if
there are no distributed generators, and are usually uniform. Be-
sides, power injection lower bounds are nonpositive if genera-
tors are allowed to be turned off. Based on 1), we impose addi-
tional constraints on the OPF problem such that its SOCP relax-
ation is always exact. These constraints restrict power injections
such that voltage upper bounds do not bind.
Third, we improve numerical stability of the SOCP relaxation

by adopting alternative variables. The SOCP relaxation is ill-
conditioned since it requires subtractions of numerically close
voltages. By adopting different variables, such subtractions can
be avoided and numerical stability can be improved.
The rest of the paper is organized as follows. The OPF

problem is formulated in Section II and an SOCP relaxation
is introduced in Section III. Section IV provides sufficient
conditions for the exactness of the SOCP relaxation, and
Section V proposes a modified OPF problem that always has an
exact SOCP relaxation. Section VI describes how to improve
numerical stability and how to include line constraints, and
Section VII provides numerical studies.

II. OPTIMAL POWER FLOW PROBLEM

This paper studies the OPF problem in DC networks, and is
applicable for demand response and voltage regulation. In the
following we present a model that incorporates nonlinear power
flow.

Fig. 1. Summary of notations.

A. Power Flow Model

A DC network is composed of buses and lines connecting
these buses. It can be either radial or mesh. There is a swing bus
in the network with a fixed voltage. Index the swing bus by 0
and the other buses by . Let denote
the collection of all buses and define . Each line
connects a pair of buses. Let denote the collection of all
lines and abbreviate by .
For each bus , let denote its voltage, denote its

current injection, and denote its power injection. For each
line , let denote its admittance, denote the current
from bus to bus , and define . In a DC network,
, , , , and are all real numbers.
Some notations are summarized in Fig. 1. Further, we use a

letter without subscripts to denote a vector of the corresponding
quantities, e.g., , .
Power flows are governed by the following physical laws:
• Ohm’s Law: for ;
• Current balance: for ;
• Power balance: for .

By eliminating current variables, one obtains

(1)

We use (1) to model the power flow in this paper.

B. Optimal Power Flow Problem

The OPF problem determines power injection that mini-
mizes the total generation cost, subject to physical and opera-
tional constraints.
The total generation cost is assumed separable. In particular,

let denote the generation cost of bus for .
Then the total generation cost is

(2)

Note that if for , then (2) reduces to the total
power loss.
Besides the physical power flow constraint (1), the OPF

problem has operational constraints on power injections and
voltages.
First, while the substation power injection is uncon-

strained, the power injection of a branch bus can
only vary within some externally specified set :

(3)
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For example, if bus represents an inelastic load with power
demand , then is a singleton

if bus represents a controllable load that can be turned on and
off (while it is turned on, it consumes amount of power), then
contains two distinct points

if bus represents a generator that can generate any amount of
power between 0 and its capacity , then is an interval

Note that the set can be nonconvex.
Second, the substation voltage is fixed and given (denote

by ), and the magnitudes of branch bus voltages need
to be regulated within a narrow range, i.e., there exists and
for such that

(4a)

(4b)

For example, if voltages must not deviate by over 5% from their
nominal values, then per unit [23].
There are other constraints in a real-world OPF problem, e.g.,

line constraints and security constraints. How to include line
constraints will be discussed in Section VI-B. In DCmicrogrids,
line constraints do not bind since distribution networks are over-
provisioned. Security constraints are ignored for simplicity.
To summarize, the OPF problem can be formulated as

The following assumptions are made throughout this work.
A1) The network is connected.
A2) Line admittance for . In practice,

since lines are lossy.
A3) Voltage lower bound for . In practice,
is slightly below 1.

III. SOCP RELAXATION

A second-order cone programming (SOCP) relaxation has
been proposed to solve the OPF problem for radial networks
[24]. We propose using it to solve the OPF problem for DC net-
works, which can be mesh.
The SOCP relaxation seeks to overcome the nonconvexity in

(1). It is derived through two steps: a) transform OPF to shift

the nonconvexity in (1) to a rank constraint, and b) remove the
rank constraint.
Transform OPF: Introduce slack variables

(5a)

(5b)

Then, (1) is transformed to a linear equality constraint

in . For each line where , the 2 2 matrix

is rank one (assuming ) and positive semidefinite.
The following lemma provides the theoretical foundation of

transforming OPF. Let

Lemma 1: Given for and for ,
let for . If

for , then there exists a unique that satisfies
and (5). Furthermore, such is given by

The lemma is proved in Appendix A.
Lemma 1 immediately implies that OPF is equivalent to

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

(6g)

Note that the nonconvexity in (1) (in OPF) is transformed to the
nonconvexity in (6g) (in OPF’).
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Remove Rank Constraint: The following SOCP relaxation
can be obtained by removing the nonconvex rank constraint (6g)
in OPF’:

Note that SOCP may not be convex since (in the objective)
and [in (6b)] may not be convex. Nonetheless, we call it
second-order cone programming for convenience.
Exact SOCP Relaxation: If an optimal SOCP solution

satisfies (6g), then also solves OPF’. Fur-
thermore, compute as

then it can be shown that solves OPF. This motivates the
definition of an exact SOCP relaxation as follows.
Definition 1: SOCP is exact, provided that every optimal

SOCP solution satisfies (6g).
When SOCP is exact, one can obtain a global optimum of the

nonconvex OPF problem by solving a convex SOCP program
(assuming and are convex).
Related Work: An SDP relaxation has been proposed in the

literature via the same two steps: transformation and relaxation
[10], [12]. In the transformation step, slack variable

...

is introduced and the nonconvexity in (1) (in OPF) is trans-
formed to the nonconvexity in

In the relaxation step, the rank constraint is re-
moved, but a positive semidefinite constraint needs to
be kept. We refer to this relaxation as SDP hereafter.
SDP enlarges the feasible set of OPF to a smaller convex su-

perset than that of SOCP, and is therefore more likely to be exact
[22]. However, we propose SOCP over SDP for DC networks
for the following two reasons:
a) SOCP is much more efficient to compute than SDP;
b) SOCP is exact under existing conditions that guarantee
the exactness of SDP.

To demonstrate a), note that SDP introduces an
matrix and therefore the number of variables in SDP

is . For a given set , let

SOCP introduces 2 2 matrices and therefore the number of
variables in SOCP is . Power networks are usually sparse,
i.e., . Hence, SOCP has fewer optimization variables
than SDP and is therefore more efficient.
To demonstrate b), we review existing conditions that guar-

antee the exactness of SDP/SOCP. The conditions are summa-
rized in Propositions 1 and 2, and follow directly from a more
general result in [25, Theorem 3.1].

Proposition 1 [12]: If there exists such that
for , and is strictly increasing for ,

then SDP is exact.
Proposition 2 [15]: If there exists such that

for , and is strictly increasing for ,
then SOCP is exact.
The conditions in Propositions 1 and 2 are the same, which

completes the demonstration of (b).

IV. SUFFICIENT CONDITIONS FOR EXACT RELAXATION

Two sufficient conditions that guarantee the exactness of
SOCP are provided in this section. One condition (Theorem
1) requires nonbinding voltage upper bounds, and the other
condition (Theorem 2) requires uniform voltage upper bounds.
Theorem 1: SOCP is exact provided that
• for ;
• is strictly increasing.

Theorem 1 implies that if voltage upper bounds do not bind, then
SOCP is exact. It is proved in Appendix B. Note that voltage
upper bounds do not bind if there are no distributed generators
like photovoltaic panels.
Theorem 1 still holds if (6b) is generalized to

(6b')

where can be arbitrary, since the proof of Theorem 1 does not
require any structure on .
Theorem 2: SOCP is exact provided that
• ;
• there exists , such that and for

;
• is strictly increasing for .

Theorem 2 implies that if voltage upper bounds are uniform
and (6b) is a collection of box constraints with negative lower
bounds, then SOCP is exact. It is proved in Appendix C. Voltage
upper bounds are usually uniform for distribution networks. If
SOCP is convex with a closed feasible set, then there exists

such that for . Further,
if generators can be turned off.

Theorem 3: If SOCP is convex and exact, then it has at most
one optimal solution.
Theorem 3 implies that if and are convex, and SOCP is

exact, then SOCP has at most one optimal solution. It is proved
in Appendix D, and still holds if (6b) is generalized to (6b’) with
being convex.

V. MODIFIED OPF PROBLEM

A modified OPF problem that always has an exact SOCP re-
laxation is proposed in this section.
The modified OPF problem is motivated by Theorem 1. The

idea is to impose additional constraints on such that
in (6d) do not bind and therefore is effectively .

More specifically, an affine function that upper
bounds is derived. Also additional constraint

(7)

is imposed on OPF’ such that does not bind.
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Fig. 2. Two example networks. (a) Two-bus network. (b) Three-bus network

A. Derive

First derive the affine functions . Let

(8)

denote the sending-end power flow from bus to bus , and

(9)

denote the magnitude square of the current on , then

(10a)

(10b)

(10c)

Given the swing bus voltage , branch bus power injection
, and line current , then (10) is a collection of

linear equations on variables and
for .
Lemma 2: Given , for , and for . There

exists a unique that satisfies (10a)–(10c).
Lemma 2 implies that and are linear functions in

. It is proved in Appendix E.
Definition 2: Given , denote the unique solution

to (10a)–(10c) as a function of
by

Two examples, one for a two-bus network [in Fig. 2(a)] and
one for a three-bus network [in Fig. 2(b)], are used to illustrate

and .
Example 1: For the two-bus network in Fig. 2(a), (10) is

Given , the affine functions are

Example 2: For the three-bus network in Fig. 2(b), (10) is

Assume for brevity. Given , ab-
breviate by and by , then the affine
functions , , , , , , , are

The following lemma shows that is decreasing in . Let the
operator denote componentwise.
Lemma 3: If , then for .
Lemma 3 implies that is decreasing in . The lemma

is proved in Appendix F. In Examples 1 and 2, it can be seen
that the coefficients of in are negative.
Since current magnitude square , one obtains

The left hand side is the real voltage , and the right hand side
is the affine function in that we aim for.
Definition 3: Define affine functions as

In Example 1

In Example 2

As has been discussed, upper bounds .
Corollary 1: Let be feasible for SOCP, then
for .

The corollary is proved in Appendix G.
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B. Impose Additional Constraint

If additional constraint (7) is imposed on SOCP, then it fol-
lows from Corollary 1 that the constraints in (6d) do
not bind, and therefore is effectively . To summarize, the
modified OPF problem is

(11)

Removing rank constraint (6g) gives the following relaxation:

Note that SOCP-mmay not be convex since (in the objective)
and [in (6b)] may not be convex. Nonetheless, we call it
second-order cone programming for convenience.
Recall that Theorem 1 holds for the more general power in-

jection constraint (6b’), and note that (7) is a special case of
(6b’). It follows that SOCP-m is always exact.
Theorem 4: SOCP-m is exact if is strictly increasing.
Theorem 4 still holds if (6b) is generalized to (6b’) with

being arbitrary.

VI. EXTENSIONS

A. Improve Numerical Stability

SOCP is ill-conditioned since (6a) requires subtractions of
numerically close and . One can avoid such subtractions
by adopting alternative variables to improve the numerical sta-
bility of SOCP. In particular, adopt variables as in the
following convex relaxation:

Theorem 5: SOCP and stable-SOCP are equivalent, i.e., there
exists a one-to-one map between the feasible set of SOCP and
the feasible set of stable-SOCP.
Let and denote the feasible sets of

SOCP and stable-SOCP, respectively. Then the map

given by

can be verified to be one-to-one from to .

B. Include Line Constraints

Noting that line constraints are not considered in the main
text, we discuss how to include line constraints in this section.
Line constraints impose that line currents should not exceed

certain thresholds, i.e., there exists for such that

It can be considered by adding constraints

to SOCP/SOCP-m, or adding constraints

to stable-SOCP. But Theorems 1, 2, and 4 do not apply after
adding these constraints.
One way to maintain some of the theoretical guarantees is to

impose the line constraints in terms of power flows instead. In
particular, is equivalent to . Assuming
that is close to its nominal value, can be ap-
proximated by for some . Since
provides an approximation of , can be further
approximated by .
Hence, one can impose

(12)

as an approximation of the line constraints to SOCP/SOCP-m/
stable-SOCP. Since (12) is a constraint on , Theorems 1 and 4
still hold after imposing the approximated line constraints (12).

VII. CASE STUDY

We empirically evaluate the exactness and computational ef-
ficiency of SOCP in this section. All simulations are done on a
laptop with Intel Core 2 Duo CPU at 2.66 GHz, 4G RAM, and
Mac OS X 10.7.5.
More specifically, we checkwhether SOCP is exact, and com-

pare its computation time with that of the SDP relaxation pro-
posed in [10]–[12], for several test networks. SOCP and SDP are
solved via CVX [26], and the test networks are modified from
the matlab toolbox matpower by ignoring line reactances and
reactive power flows. The results are summarized in Table I.
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TABLE I
EXACTNESS AND COMPUTATIONAL EFFICIENCY OF SOCP

The first column of Table I lists where the network data comes
from. In particular, it provides the names of the “.m” files where
the network data is stored (these files can be found in the folder
of the matlab toolbox matpower). For example, the data for a
6-bus network is stored in file “case6ww.m”, and the data for a
9-bus network is stored in file “case9.m”.
For each network, the following numbers are presented:
1) SDP time: the computation time of SDP.
2) SOCP time: the computation time of SOCP.
3) ratio: used to quantify the exactness of SOCP.
The “ratio” column quantifies how numerically exact SOCP is.
At a numerical SOCP solution , which can be slightly
different from the real SOCP solution , a 2 2
matrix

can be obtained for each line . Let , denote its two
eigenvalues and assume .
Assume SOCP is exact, i.e., for
. If there are infinite digits of precision, i.e.,

, then
and therefore for . It follows that the ratio

.
Due to finite digits of precision, the ratio is not ex-

actly 0. The smaller ratio, the closer is to rank one. And
the column “ratio” lists upper bounds on the ratios
over all . For example, for the 6-bus network specified in
case6ww.m, the ratios are upper bounded by 3.4e-13.
It can be seen from the “ratio” column that SOCP is exact

for all test networks. Furthermore, it can be seen from the “SDP
time” and “SOCP time” columns that SOCP is more computa-
tionally efficient than SDP.

VIII. CONCLUSION

We have proposed an SOCP relaxation of the OPF problem
for DC networks, that is more computationally efficient than the
standard SDP relaxation. We have proved that the SOCP relax-
ation is exact if either 1) voltage upper bounds do not bind,
or 2) voltage upper bounds are uniform and power injections
have box constraints with negative lower bounds. We have also
proved that the SOCP relaxation has at most one optimal solu-
tion if it is convex and exact.
We have proposed a modified OPF problem that always has

an exact SOCP relaxation. The modified OPF problem is moti-
vated by 1) and obtained by imposing additional constraints on
power injections such that voltage upper bounds do not bind.

We have discussed how to improve the numerical stability
of SOCP—by adopting alternative variables to avoid ill-con-
ditioned numerical operations. We have also discussed how
to include line constraints—after adding some approximated
line constraints, some of the theoretical guarantees remain
unchanged.

APPENDIX

A. Proof of Lemma 1

Existence: Let for . It suffices to show that
satisfies and (5).
It is straightforward to check that satisfies and

(5a). The matrices

are not full rank, and therefore

Since , one has

for , i.e., satisfies (5b). This completes the proof of
existence.
Uniqueness: Let denote an arbitrary solution to

and (5). It suffices to show that for .
Assume for some , then it follows from

(5a) that . For any such that , one has
and therefore . It follows that

since . Such propagation (when , one has
for all neighboring ) can continue and eventually one

has since the network is connected. This contradicts
with the assumption that . Hence, for

, which completes the proof of uniqueness.

B. Proof of Theorem 1

Assume the conditions in Theorem 1 hold. We will show
that for any SOCP feasible point that violates (6g),
there exists another SOCP feasible point that has a
smaller objective value than . Hence, every SOCP so-
lution must satisfy (6g), i.e., SOCP is exact.
Construction of is based on Lemmas 4 and 5.
Lemma 4: Let be feasible for SOCP and violate

(6g) on some where . Then there exists
that
• satisfies (6a), (6e), (6f);
• satisfies

• violates (6g) for all such that .
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Furthermore, if for , then is fea-
sible for SOCP.
Lemma 4 implies that violation of (6g) propagates to neigh-

boring lines: if there exists an SOCP solution that vi-
olates (6g) on some line , then there exists an SOCP so-
lution that violates (6g) on all neighboring lines of

.
Proof: Let be feasible for SOCP and violate (6g)

on where . Since satisfies (6f), one has
. Since violates (6g) on , one

has . Hence

Pick , construct as

otherwise
(13)

and construct as

if
otherwise.

We will show that is as required in Lemma 4.
It follows immediately from (13) that if and

if . The point satisfies (6a) because

for , and

for . The point satisfies (6e) because

for . The point satisfies (6f) because

for , and

for . It follows that for . In
particular, for such that

We have shown that is as required in Lemma
4. When for , it is straightforward that

is feasible for SOCP. This completes the proof of
Lemma 4.

Lemma 5: Let be feasible for SOCP and violate
(6g) on some . Then there exists that
• satisfies (6a), (6e), (6f);
• satisfies

• satisfies and for .
Furthermore, if for , then is
feasible for SOCP; if is strictly increasing, then
has a smaller objective value than .
Lemma 5 implies that every SOCP solution satisfies (6g) on

all neighboring lines of the swing bus: for any SOCP feasible
point that violates (6g) on some neighboring line

of the swing bus 0, there exists an SOCP feasible
point with a smaller objective value and therefore

cannot be optimal.
Proof: Let be feasible for SOCP and violate (6g)

on some . Since satisfies (6f), one has
. Since violates (6g) on , one has
. Hence

Pick , construct as

otherwise
(14)

construct as

if
otherwise

and construct as

We will show that is as required in Lemma 5.
It follows immediately from (14) that if and

if . The point satisfies (6a) according
to the construction of . The point satisfies (6e)
because

for . The point satisfies (6f) because

for , and
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for . One can prove that for as
in Lemma 4, and

We have shown that is as required in Lemma
5. When for , it is straightforward that

is feasible for SOCP. When is strictly in-
creasing, it is straightforward that has a smaller
objective value than . This completes the proof of
Lemma 5.
Combining Lemmas 4 and 5 gives the proof of Theorem 1.

Assume there exists an SOCP solution that violates
(6g). By repeating the construction described in Lemma 4,
one can find an SOCP solution that violates (6g)
on some neighboring line of the swing bus 0 since
the network is connected. By Lemma 5, this contradicts the
optimality of . Hence, every SOCP solution must
satisfy (6g), i.e., SOCP is exact. This completes the proof of
Theorem 1.

C. Proof of Theorem 2

Assume the conditions in Theorem 2 hold. We will show
that for any SOCP feasible point that violates (6g),
there exists another SOCP feasible point that has a
smaller objective value than . Hence, every SOCP so-
lution must satisfy (6g), i.e., SOCP is exact.
Construction of is based on Lemmas 6–9.
Lemma 6: Assume the conditions in Theorem 2 hold and let

be feasible for SOCP. If for some ,

then .
Lemma 6 implies that power injection lower bound and

voltage upper bounds cannot bind simultaneously: if the con-
straint is binding at some bus , then
cannot bind at bus .

Proof: When , one has

and therefore for some . It follows
from (6g) that and therefore

This completes the proof of Lemma 6.
Lemma 7: Assume the conditions in Theorem 2 hold and let

be feasible for SOCP. If
• violates (6g) on some ;
• , (introduce since is uncon-
strained),

then there exists that
• satisfies (6a)–(6f);

• satisfies

if
otherwise.

Lemma 7 implies that if an SOCP solution violates (6g) on some
, it must satisfy or .
Proof: Since satisfies (6f), .

Since violates (6g) on , . Hence,
.

Pick an such that

construct as

if
otherwise;

and construct as

We will show that is as required in Lemma 7.
The point satisfies (6a) according to the construc-

tion of . When , one has

When , one has

Hence, satisfies (6b) and

if
otherwise.

The point satisfies (6e) because

for . The point satisfies (6f) because

when and

when . This completes the proof of Lemma 7.
Lemma 8: Assume the conditions in Theorem 2 hold and let

be feasible for SOCP. If
• violates (6g) on some where ;
• or ,

then there exists that
• satisfies (6a)–(6f);
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• satisfies

Lemmas 7 and 8 imply that every SOCP solution, if violating
(6g) on some where , must satisfy and

.
Proof: We present the proof for the case where

The proof for the case where and is similar and
omitted for brevity. Since satisfies (6f),

. Since violates (6g) on , .
Hence

It follows from Lemma 6 that

Pick an such that

then

Construct as

if
otherwise;

construct as

if

otherwise;

and construct as

We will show that is as required in Lemma 8.
The point satisfies (6a) according to the construc-

tion of . When , one has

Besides, one has

Hence, satisfies (6b) and

if
otherwise.

It follows that . Note that

if
otherwise

and , the point satisfies (6c) and (6d). The
point satisfies (6e) because

for . The point satisfies (6f) because

when and

This completes the proof of Lemma 8.
Lemma 9: Assume the conditions in Theorem 2 hold and let

be feasible for SOCP. If
• violates (6g) on some where ;
• and

then there exists that
• satisfies (6a)–(6f);
• violates (6g) for such that .

Lemmas 7–9 imply that violation of (6g) propagates to neigh-
boring lines: if there exists an SOCP solution that violates (6g)
on some where , then there exists an SOCP solu-
tion that violates (6g) on all neighboring lines of .

Proof: Since satisfies (6f), .
Since violates (6g) on , . Hence

It follows from Lemma 6 that
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Pick an such that

then

Construct as

if
otherwise

and construct as

if

otherwise.

We will show that is as required in Lemma 9.
It is straightforward to check that the point satis-

fies (6c) and (6d). The point satisfies (6a) because

for , and

for . The point satisfies (6e) because

for . The point satisfies (6f) because

for , and

for . It follows that for . In
particular, for such that ,

This completes the proof of Lemma 9.

Combining Lemmas 6–9 gives the proof of Theorem 2. As-
sume the conditions in Theorem 2 hold. If SOCP is not exact,
then there exists an SOCP solution that violates (6g)
on some .
According to Lemmas 7–8, one must have and
since otherwise cannot be optimal for SOCP (in-

troduce since is unconstrained).
According to Lemma 9, there exists an SOCP solution

that violates (6g) on all neighboring lines of
. Since the network is connected, one can continue

such propagation to obtain an SOCP solution that violates (6g)
on some neighboring line of the swing bus 0. Then

This contradicts with . Hence, SOCP is exact. This com-
pletes the proof of Theorem 2.

D. Proof of Theorem 3

Assume that SOCP is convex, exact, and has at least one so-
lution. Let and be two SOCP
solutions. It suffices to prove .
Let be the average of and
. Since SOCP is convex, is optimal for SOCP. Since SOCP
is exact, the points , , and all satisfy (6g), i.e.,

(15a)

(15b)

(15c)

for . Substitute , in
(15c), and simplify using (15a) and (15b) to obtain

It follows that

for . The inequality attains equality, and therefore

Let denote the ratio of to for , then
and if . Since the network is connected,
for . Hence, . Then, it follows from (15) that

We have shown that . It follows immedi-
ately that and therefore .

E. Proof of Lemma 2

Fix and let denote the number of lines.
Then (10a)–(10c) collect linear equations in vari-
ables and . To show the uniqueness of
satisfying (10a)–(10c), it suffices to prove that (10a)–(10c) are
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linearly independent, i.e., if the coefficients of and for all
and all in

are 0, then .
Introduce for convenience. For each , the

coefficients of and being 0 implies

(16a)

(16b)

It follows that

Hence, implies , and it further follows from (16a)
that . Therefore, it suffices to prove that .
Let denote the set of buses where is

maximized. Since , is equivalent to . Since
the network is connected and , to prove ,
it suffices to show

For , the coefficient of being 0 implies

If and , then

Hence, and therefore . This completes the proof
of Lemma 2.

F. Proof of Lemma 3

Let . Define and

Let denote the set of buses where
is minimized. If , then , i.e.,

for . Hence, it suffices to prove that .
We prove by contradiction. Assume . Let

denotes a nonempty connected component of , then .
Whenever , , and , one has (otherwise

by the definition of a connected component). Therefore
(since is minimized in ) and it follows that

Hence, for all such that and .
It follows that

which is a contradiction. Hence, . This completes the
proof of Lemma 3.

G. Proof of Corollary 1

Let be feasible for SOCP, and define and ac-
cording to (8) and (9). It is straightforward to check that the
point satisfies (10a)–(10c) and therefore

Since satisfies (6f), one has and there-
fore

for , i.e., . It follows that , i.e.,
, for .

REFERENCES
[1] D. Salomonsson, L. Soder, and A. Sannino, “Protection of low-voltage

dc microgrids,” IEEE Trans. Power Del., vol. 24, no. 3, pp. 1045–1053,
Jul. 2009.

[2] D. Salomonsson, L. Soder, and A. Sannino, “An adaptive control
system for a dc microgrid for data centers,” in Conf. Record 2007
IEEE Industry Applications Conf., 42nd IAS Annual Meeting, 2007,
pp. 2414–2421.

[3] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type dc mi-
crogrid for super high quality distribution,” IEEE Trans. Power Elec-
tron., vol. 25, no. 12, pp. 3066–3075, Dec. 2010.



2904 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 6, NOVEMBER 2014

[4] J. Carpentier, “Contribution to the economic dispatch problem,” Bull.
Societe Francoise des Electriciens, vol. 3, no. 8, pp. 431–447, 1962.

[5] B. Stott and O. Alsac, “Fast decoupled load flow,” IEEE Trans. Power
App. Syst., vol. PAS-93, no. 3, pp. 859–869, 1974.

[6] G. C. Contaxis, C. Delkis, and G. Korres, “Decoupled optimal power
flow using linear or quadratic programming,” IEEE Trans. Power Syst.,
vol. 1, no. 2, pp. 1–7, May 1986.

[7] W. Min and L. Shengsong, “A trust region interior point algorithm for
optimal power flow problems,” Int. J. Elect. Power Energy Syst., vol.
27, no. 4, pp. 293–300, 2005.

[8] E.C.Baptista, E.A.Belati, andG.R.M. daCosta, “Logarithmic barrier-
augmented Lagrangian function to the optimal power flow problem,”
Int. J. Elect. Power Energy Syst., vol. 27, no. 7, pp. 528–532, 2005.

[9] G. L. Torres and V. H. Quintana, “An interior-point method for
nonlinear optimal power flow using voltage rectangular coordinates,”
IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1211–1218, Nov. 1998.

[10] X. Bai, H. Wei, K. Fujisawa, and Y. Yang, “Semidefinite programming
for optimal power flow problems,” Int. J. Elect. Power Energy Syst.,
vol. 30, no. 6, pp. 383–392, 2008.

[11] X. Bai and H. Wei, “Semi-definite programming-based method for
security-constrained unit commitment with operational and optimal
power flow constraints,” IET Gen., Transm., Distrib., vol. 3, no. 2, pp.
182–197, 2009.

[12] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow
problem,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92–107, Feb.
2012.

[13] D. K. Molzahn, J. T. Holzer, B. C. Lesieutre, and C. L. DeMarco,
“Implementation of a large-scale optimal power flow solver based on
semidefinite programming,” IEEE Trans. Power Syst., vol. 28, no. 4,
pp. 3987–3998, Nov. 2013.

[14] B. Lesieutre, D. Molzahn, A. Borden, and C. L. DeMarco, “Examining
the limits of the application of semidefinite programming to power flow
problems,” in Proc. 2011 49th Annu. Allerton Conf. Communication,
Control, and Computing (Allerton), 2011, pp. 1492–1499.

[15] J. Lavaei, A. Rantzer, and S. Low, “Power flow optimization using
positive quadratic programming,” in Proc. IFAC World Congr., 2011.

[16] B. Zhang and D. Tse, “Geometry of injection regions of power net-
works,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 788–797, May
2013.

[17] S. Bose, D. Gayme, S. Low, and K. Chandy, Quadratically Constrained
Quadratic Programs on Acyclic Graphs With Application to Power
Flow, arXiv:1203.5599, 2012.

[18] M. Farivar, C. R. Clarke, S. H. Low, and K. M. Chandy, “Inverter
var control for distribution systems with renewables,” in Proc. IEEE
SmartGridComm, 2011, pp. 457–462.

[19] L. Gan, N. Li, U. Topcu, and S. H. Low, “On the exactness of convex
relaxation for optimal power flow in tree networks,” in Proc. IEEE
2012 IEEE 51st Annu. Conf. Decision and Control (CDC), 2012, pp.
465–471.

[20] K. Nakata, M. Yamashita, K. Fujisawa, and M. Kojima, “A parallel
primal-dual interior-point method for semidefinite programs using pos-
itive definite matrix completion,” Parallel Comput., vol. 32, no. 1, pp.
24–43, 2006.

[21] A. Lam, B. Zhang, and D. N. Tse, “Distributed algorithms for optimal
power flow problem,” in Proc. 2012 IEEE 51st Annu. Conf. Decision
and Control (CDC), 2012, pp. 430–437.

[22] S. Bose, S. Low, and K. Chandy, “Equivalence of branch flow and bus
injection models,” in Proc. 50th Annu. Allerton Conf., Oct. 2012.

[23] Electric Power Systems and Equipment—Voltage Ratings (60 Hertz),
ANSI Standard Publication, no. ANSI C84.1, 1995.

[24] S. Sojoudi and J. Lavaei, “Physics of power networks makes hard op-
timization problems easy to solve,” in Proc. IEEE Power & Energy
Society General Meeting, 2012, pp. 1–8.

[25] S. Kim and M. Kojima, “Exact solutions of some nonconvex quadratic
optimization problems via SDP and SOCP relaxations,”Computat. Op-
timiz. Applicat., vol. 26, no. 2, pp. 143–154, 2003.

[26] CVX [Online]. Available: http://cvxr.com/cvx

Lingwen Gan received the B.E. degree in elec-
tronics engineering from Tsinghua University,
Beijing, China, in 2010 and the M.S. degree in
electrical engineering from the California Institute
of Technology (Caltech), Pasadena, CA, USA, in
2012. He is currently pursuing the Ph.D. degree in
electrical engineering at Caltech working with Prof.
Steven H. Low.
His research interests are in distributed load con-

trol, optimal power flow, and renewable energy.

Steven H. Low (F’08) received the B.S. degree from
Cornell University, Ithaca, NY, USA, and the Ph.D.
degree from the University of California, Berkeley,
CA, USA, both in electrical engineering.
He is a Professor of the Computing & Mathemat-

ical Sciences and Electrical Engineering departments
at the California Institute of Technology (Caltech),
Pasadena, CA, USA, and a Changjiang Chair Pro-
fessor of Zhejiang University. Before that, he was
with AT&TBell Laboratories, Murray Hill, NJ, USA,
and the University of Melbourne, Melbourne, Aus-

tralia. His research interests are in power systems and communication networks.
Prof. Low was a co-recipient of IEEE best paper awards, the R&D 100

Award, and an Okawa Foundation Research Grant. He is on the Technical Advi-
sory Board of Southern California Edison and was a member of the Networking
and Information Technology Technical Advisory Group for the US President’s
Council of Advisors on Science and Technology (PCAST). He is a Senior
Editor of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, the
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, and the IEEE
TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, and is on the
editorial board of NOW Foundations and Trends in Networking, and in Electric
Energy Systems.


