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Abstract: The problem to minimize power losses in an electrical network subject to voltage
and power constraints is in general hard to solve. However, it has recently been discovered that
semidefinite programming relaxations in many cases enable exact computation of the global
optimum. Here we point out a fundamental reason for the successful relaxations, namely that the
passive network components give rise to matrices with nonnegative offdiagonal entries. Recent
progress on quadratic programming with Metzler matrix structure can therefore be applied.
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1. INTRODUCTION

The optimal power flow (OPF) problem aims to find an
optimal operating point of a power system, that min-
imizes an appropriate cost function such as generation
cost or transmission loss subject to certain constraints
on power and voltage variables (Momoh, 2001). Since the
pioneering work (Carpentier, 1962), the OPF problem has
been extensively studied in the literature and numerous
algorithms have been proposed for solving this highly non-
linear problem (Huneault and Galiana, 1991; Torres and
Quintana, 2000; H. Wang and Thomas, 2007). Approaches
include linear programming, Newton Raphson, quadratic
programming, nonlinear programming, Lagrange relax-
ation, interior point methods, artificial intelligence, arti-
ficial neural network, fuzzy logic, genetic algorithms, evo-
lutionary programming and particle swarm optimization
(Momoh, 2001; El-Hawary and Adapa, 1999a,b; Pandya
and Joshi, 2008). A good number of these methods are
based on the Karush-Kuhn-Tucker (KKT) necessary con-
ditions, which due to the nonconvex problem formulations
can only guarantee a locally optimal solution (H. Wei and
Yokoyama, 1998). This nonconvexity is partially due to
the cross products of voltage variables corresponding to
disparate buses. In the past decade, much attention has
been paid to devising efficient algorithms with guaranteed
performance for the OPF problem. For instance, the recent
papers (W. M. Lin and Zhan, 2008) and (Q. Y. Jiang and
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Cao, 2009) propose nonlinear interior-point algorithms for
an equivalent current injection model of the problem. An
improved implementation of the automatic differentiation
technique for the OPF problem is studied in the recent
work (Q. Jiang and Cao, 2010). In an effort to convexify
the OPF problem, it is shown in (Jabr, 2006) that the
load flow problem of a radial distribution system can be
modeled as a convex optimization problem in the form
of a conic program. Nonetheless, the results fail to hold
for a meshed network, due to the presence of arctangent
equality constraints (Jabr, 2008). Nonconvexity appears
in more sophisticated power problems such as the stabil-
ity constrained OPF problem where the stability at the
operating point is an extra constraint (D. Gan and Zim-
merman, 2000; H. R. Cai and Wong, 2008) or the dynamic
OPF problem where the dynamics of the generators are
also taken into account (Xie and Song, 2002; Xia and
Chan, 2006).

In (Lavaei and Low, 2010), it was proposed to solve the La-
grangian dual of the OPF problem and recover the desired
solution from a dual optimum. This approach was applied
successfully to several examples and possible explanations
were discussed. In this paper, we point out the connection
to a class of quadratic programming problems with non-
convex quadratic constraints for which semidefinite relax-
ations are always exact (Kim and Kojima, 2003). A rigor-
ous mathematical statement is given and its application to
DC power networks is explained in the next section. AC
networks are not covered by Theorem 1, but the semidef-
inite relaxations have still turned out to be exact for the
IEEE benchmark systems treated in section 5. Concluding
remarks are given in section 6.
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Fig. 1. A power distribution network

Notations: We introduce the following notations:

• i : The imaginary unit.
• R: The set of real numbers.
• Re{·} and Im{·}: The operators returning the real
and imaginary parts of a complex matrix.

• ∗ : The conjugate transpose operator.
• T : The transpose operator.
• � and � : The matrix inequality signs in the positive
semidefinite sense (i.e. given two symmetric matrices
A and B, A � B implies A − B is a positive
semidefinite matrix, meaning that its eigenvalues are
all nonnegative).

• Trace: The matrix trace operator.
• | · | : The absolute value operator.
• For any vector x, xi generally denotes the ith com-
ponent.

2. OPTIMAL POWER FLOW IN DC NETWORKS

Consider a DC power transmission network as in Figure 1.
All nodes are subject to constraints of the form IkVk ≤ Pk.
For generating nodes Pk represents the generator capacity.
For power consuming loads Ik and Pk are negative and
−Pk represents the power demand.

Every connection has a known admittance yjk = ykj ≥ 0.
In particular, the current flowing from node 1 to node 2
equals y12(V1−V2). Writing Kirchhoff’s current law for all
nodes in Figure 1 gives
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Suppose every link has a has a capacity bound Lij on the
transferred power and every node has upper and lower
bounds on the voltage according to V min

k ≤ Vk ≤ V max
k .

Then the problem to minimize the power losses in the
network subject to constaints on power demands, voltage
and link capacities can be written

Minimize I1V1 + · · ·+ INVN

subject to I = Y V with VkIk ≤ Pk

V min
k ≤ Vk ≤ V max

k

yjk(Vk − Vj)
2 ≤ Ljk

for j, k = 1, . . . , N

This is a quadratic optimization problem with quadratic
constraints. The constraints are not convex in the variables
V1, . . . , VN , so the problem could look intractable at first.
However, a closer look reveals that both the objective and

the constraints are concave in (V 2
1 , . . . , V

2
N ) (Megretski,

2010). This is because every product VjVk is the geometric
mean of two such variables, hence concave. The fact that
all yjk ≥ 0 is essential.

Another way to get a convex formulation of the OPF
problem is by convex relaxation. The following result from
(Kim and Kojima, 2003, Theorem 3.1) shows that if a
nonconvex quadratic programming problem is defined by
Metzler matrices (matrices with nonnegative off-diagonal
elements), then it can be solved exactly using a semi-
definite programming relaxation.

Proposition 1. (Positive Quadratic Programming). Let
M0, . . . ,MK ∈ Rn×n be Metzler and b1, . . . , bK ∈ R. Then

max xTM0x = max trace(M0X)

s.t. x ∈ Rn
+ s.t. X � 0

xTMkx ≥ bk trace(MkX) ≥ bk
k = 1, . . . ,K k = 1, . . . ,K

(2)

Proof. Every x satisfying the constraints on the left hand
side of (2) corresponds to a matrix X = xxT satisfying
the constraints on the right hand side. This shows that
the right hand side of (2) is at least as big as the left.

On the other hand, let X = (xij) be any positive
definite matrix. In particular, the diagonal elements
x11, . . . , xnn are non-negative and xij ≤ √

xiixjj . Let

x = (
√
x11, . . . ,

√
xnn). Then the matrix xxT has the same

diagonal elements as X, but has off-diagonal elements√
xiixjj instead of xij . The fact that xxT has off-diagonal

elements at least as big as those of X, together with the
assumption that the matrices Mk are Metzler, gives

xTMkx ≥ trace(MkX) k = 1, . . . ,K

This shows that the left hand side of (2) is at least as big
as the right and the proof is complete. 2

We believe that the convex reformulations of the OPF
problem for DC networks presented above are of significant
practical importance. In addition to real DC transmission
networks, the results are relevant for analysis of power
markets where DC networks are used as approximations
of AC networks. For example, the Lagrange multiplier cor-
responding to the constraint IkVk ≤ Pk can be interpreted
as the optimal price of power at node k.

3. OPTIMAL POWER FLOW IN AC NETWORKS

Consider an AC power network with n buses, labeled
1, ..., n, where all buses are possibly directly connected to
loads, but only the first m buses are directly connected to
generators. For k ∈ {1, ..., n} and l ∈ {1, ...,m}, define the
following quantities:

• P d
k and Qd

k (real-valued): Active and reactive loads at
buses k, respectively. They are given fixed demands.

• P
g
l and Q

g
l (real-valued): Active and reactive powers

generated at buses l, respectively. They are optimiza-
tion variables.

• Vk (complex-valued): Voltages at buses k. They are
optimization variables.

• fl(P
g
l ) = cl2(P

g
l )

2 + cl1P
g
l + cl0 (real-valued):

Cost functions associated with generators l, where
cl2, cl1, cl0 are nonnegative numbers.



Derive the circuit model of the power network by replacing
every transmission line and transformer with their equiv-
alent Π models (Momoh, 2001). In this circuit model, let
ykl be the mutual admittance between buses k and l, and
ykk be the admittance-to-ground at bus k, for every l, k ∈
{1, ..., n}. Denote the admittance matrix of this equivalent
circuit model with Y , which is an n × n complex-valued
matrix whose (l, k) entry is equal to −ylk if l 6= k and
yll +

∑

p∈N (l) ylp otherwise, where N (l) is the set of buses

that are directly connected to bus l. Denote by the column
vector V := (Vk, k = 1, . . . , n) the complex voltages. De-
fine the current vector I := Y V = (Ik, k = 1, ..., n). Let
P g := (P g

l , l = 1, . . . ,m) and Qg := (Qg
l , l = 1, . . . ,m).

The classical optimal power flow (OPF) problem is:

OPF:

min
V,P g,Qg

m∑

l=1

fl(P
g
l ) (3)

subject to

Pmin
l ≤ P

g
l ≤ Pmax

l , l = 1, 2, ...,m (4a)

Qmin
l ≤ Q

g
l ≤ Qmax

l , l = 1, 2, ...,m (4b)

V min
k ≤ |Vk| ≤ V max

k , k = 1, 2, ..., n (4c)

VlI
∗
l = (P g

l − P d
l ) + (Qg

l −Qd
l )i, l = 1, 2, ...,m (4d)

VkI
∗
k = −P d

k −Qd
ki, k = m+ 1, ..., n (4e)

The inequalities (4a), (4b) and (4c) limit the power and
voltage variables to within the given bounds Pmin

l , Pmax
l ,

Qmin
l , Qmax

l , V min
k , V max

k , whereas the last two equations
(4d) and (4e) express the physical constraints imposed by
the network.

Though not stated explicitly in the results that follow,
we assume the following condition to hold throughout the
paper:

C0: (i) OPF (3)–(4) is feasible. Moreover, V = 0 is not
a feasible point of OPF.

(ii) The admittance matrix Y is symmetric (yij =
yji) and has two important properties: the off-
diagonal entries of the matrix Re{Y } are all
nonpositive, and the off-diagonal entries of the
matrix Im{Y } are all nonnegative.

Assumption C0(i) is to avoid triviality. Assumption C0(ii)
always holds in standard power systems where the re-
sistance, capacitance and inductance in the Π model of
transmission lines are positive.

4. ALGORITHM

The voltage constraints (4c) and the network constraints
(4d)–(4e) are the sources of nonconvexity that makes OPF
generally hard. Our approach is to consider a convex
relaxation of the problem, which can be solved efficiently.
To state our main result, we need the following notations.

Eliminating the variables P g
l = Re{YlI

∗
l }+ P d

l and Q
g
l =

Im{YlI
∗
l } + Qd

l using the network constraints (4d) and
(4e), we can write the OPF problem in terms only of
the complex voltages V (noting I = Y V ). Extend the
definition of Pmin

k , Pmax
k , Qmin

k , Qmax
k to k ∈ {m+1, ..., n},

with Pmin
k = Pmax

k = Qmin
k = Qmax

k = 0 if k ∈ {m +

1, ..., n}. Let e1, e2, ..., en denote the standard basis vectors
in Rn. For every k = 1, 2, ..., n, define Mk ∈ R2n×2n as a
diagonal matrix whose entries are all equal to zero, except
for its (k, k) and (n+ k, n+ k) entries that are equal to 1.
Define also

Yk := eke
∗
kY

Yk :=
1

2

[
Re{Yk + Y T

k } Im{Y T
k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

]

Ȳk :=
−1

2

[
Im{Yk + Y T

k } Re{Yk − Y T
k }

Re{Y T
k − Yk} Im{Yk + Y T

k }

]

Define the variables for the dual problem as a 6n-
dimensional real vector:

x := (λmin
k , λmax

k , λ̄min
k , λ̄max

k , µmin
k , µmax

k , k = 1, ..., n)

and a 2m-dimensional real vector

r := (rl1, rl2, l = 1, ...,m)

Define the affine function

h(x, r) :=

n∑

k=1

{

λmin
k Pmin

k − λmax
k Pmax

k + λkP
d
k

+ λ̄min
k Qmin

k − λ̄max
k Qmax

k + λ̄kQ
d
k + µmin

k

(
V min
k

)2

− µmax
k (V max

k )
2

}

+

m∑

l=1

(cl0 − rl2)

where the bold variables are defined in terms of (x, r) as:
for k = 1, ..., n

λk :=

{
−λmin

k + λmax
k + ck1 + 2

√
ck2rk1 if k = 1, ...,m

−λmin
k + λmax

k otherwise

λ̄k := −λ̄min
k + λ̄max

k

µk := −µmin
k + µmax

k

Instead of the nonconvex OPF problem, we propose solv-
ing the following convex problem.

Dual OPF:
max
x≥0,r

h(x, r) (5)

subject to
n∑

k=1

(
λkYk + λ̄kȲk + µkMk

)
� 0 (6a)

[
1 rl1
rl1 rl2

]

� 0, l = 1, 2, ...,m (6b)

This semidefinite program is the dual of an equivalent form
of OPF. See (Lavaei and Low, 2011). It is therefore convex
and can be solved efficiently. This motivates the following
approach to solving OPF.

Algorithm for Solving OPF:

(1) Compute a solution (xopt, ropf) of Dual OPF (5)–(6).
(2) If the optimal value of Dual OPF is +∞, then OPF

is infeasible.
(3) Compute any nonzero vector

[

UT
1 UT

2

]T
in the null

space of the 2n× 2n positive semidefinite matrix

Aopt :=
n∑

k=1

(

λ
opt
k Yk + λ̄

opt
k Ȳk + µ

opt
k Mk

)

(7)

(4) Compute an optimal solution V opt of OPF as

V opt = (ζ1 + ζ2i)(U1 + U2i) (8)

by solving for ζ1 and ζ2 from optimality conditions.



(5) Verify that V opt satisfies all the constraints of OPF
(3)–(4) and that the resulting objective value of OPF
equals the optimal value of Dual OPF (zero duality
gap).

We make several remarks. First, provided OPF is feasible,
the null space of Aopt has an even dimension of at least 2.
Hence Step 3 of the Algorithm will always yield a nonzero

vector
[

UT
1 UT

2

]T
. Second, having found U1 and U2, the

scalars ζ1 and ζ2 can be identified from the first order op-
timality (KKT) condition for Dual OPF or the feasibility
condition for OPF. For instance, the voltage angle at the
swing bus being zero introduces an equation in terms of ζ1
and ζ2. If, in addition, (µmin

k )opt (respectively, (µmax
k )opt)

turns out to be nonzero for some k ∈ {1, 2, ...n}, then the

relation |V opt
k | = V min

k (respectively, |V opt
k | = V max

k ) must
hold by complementary slackness, which provides another
equation relating ζ1 to ζ2. Third, the weak duality theorem
implies that the optimal value of OPF is greater than or
equal to that of its dual. Hence, Step 2 detects when OPF
is infeasible. Even when OPF is feasible, there is generally
a nonzero duality gap and an optimal solution to OPF may
not be recoverable from an optimal dual solution. However,
if V opt computed in Step 4 indeed is primal feasible as
verified in Step 5, then duality gap is zero and V opt is
indeed optimal for OPF. This is the case with all the IEEE
benchmark examples described in Section 5, and hence all
of them can be solved efficiently by the above Algorithm.

Indeed, the following sufficient condition guarantees that
the Algorithm finds an optimal solution of OPF:

C1: There exists a dual optimal solution (xopt, ropt) such
that the 2n× 2n positive semidefinite matrix Aopt in
(7) has a zero eigenvalue of multiplicity 2.

In this case, the null space of Aopt has dimension 2.

If condition C1 holds, then

(1) There is no duality gap between OPF and Dual OPF.

(2) Given any vector
[

UT
1 UT

2

]T
in the null space of

Aopt, the voltages V opt calculated in (8) is indeed
optimal for OPF.

See (Lavaei and Low, 2011) for details.

5. POWER SYSTEM EXAMPLES

This section illustrates our results through two examples.
Example 1 uses the IEEE benchmark systems archived
at (University of Washington) to show the practicality of
our result. Since the systems analyzed in Example 1 are
so large that the specific values of the optimal solution
cannot be provided in the paper, some smaller examples
are analyzed in Example 2 with more details.

There are two main findings from this exercise. First, the
duality gap is zero for all the systems we have tried,
even when the sufficient condition C1 is not satisfied.
We verify this by following the Algorithm in Section 4
to solve Dual OPF and compute the voltages. In all
cases, the voltages obtained are feasible for Optimization
1 and achieve a primal objective value that is equal to
the optimal objective value of Optimization 2. By weak
duality theorem, the duality gap is zero and the voltages

are optimal for OPF. Second, condition C1 is essentially
satisfied: when it is violated, the violation is due to the
simplifying modeling assumption that transformers have
zero resistance. If a small resistance (10−5 per unit) is
added to each of these transformers, condition C1 is
satisfied for all IEEE benchmark systems.

The results of this section are attained using the following
software tools:

• The MATLAB-based toolbox “YALMIP” (together
with the solver “SEDUMI”) is used to solve the dual
of the OPF problem (Optimization 2), which is in
the form of a linear-matrix-inequality optimization
problem (Löfberg, 2004).

• The software toolbox “MATPOWER” is used to
solve the OPF problem in Example 1 for the sake
of comparison. The data for the IEEE benchmark
systems analyzed in this example is extracted from
the library of this toolbox (R. D. Zimmerman and
Thomas, 2009).

• The software toolbox “PSAT” is used to draw and
analyze the power networks given in Example 2
(Milano, 2005).

5.1 Example 1: IEEE benchmark systems

We have solved all IEEE systems with 14, 30, 57, 118 and
300 buses using the method developed in this paper, where
the goal is to minimize either the total generation cost
or the power loss. However, due to space restrictions, the
details will be provided here only for two cases: (i) the
loss minimization for the IEEE 30-bus system, and (ii) the
total generation cost minimization for the IEEE 118-bus
system.

IEEE 30-bus system First, consider the OPF problem
for the IEEE 30-bus system, where the objective is to
minimize the total power generated by the generators.
When the original Optimization 2 is solved, the four
smallest eigenvalues of the matrix

Aopt =

[

H1(Λ
opt, Λ̄

opt
,Γopt) H2(Λ

opt, Λ̄
opt

,Γopt)

−H2(Λ
opt, Λ̄

opt
,Γopt) H1(Λ

opt, Λ̄
opt

,Γopt)

]

would be obtained as 0, 0, 0, 0. Since the number of zero
eigenvalues is 4, condition C1 is violated. To understand
the underlying reason, one should note that the network
is composed of three regions connected to each other
via some transformers. This implies that if each line of
the circuit is replaced by its resistive part, the resulting
resistive graph will not be connected (since the lines with
transformers are assumed to have no resistive parts). Thus,
the graph induced by Re{Y } is not strongly connected.
This is an issue with all the IEEE benchmark systems.
This can be easily fixed by adding a little resistance to
each transformer, say on the order of 10−5 (per unit).
After this modification to the real part of Y , the four
smallest eigenvalues of the matrix Aopt turn out to be
0, 0, 0.0075, 0.0075; i.e. the zero eigenvalues resulting from
the non-connectivity of the resistive graph have disap-
peared. Condition C1 is satisfied and the corresponding
vector of optimal voltages can be recovered.

Note that, for k = 1, . . . , n,

λk ∈ [1, 1.0426], λ̄k ∈ [0, 0.0152], µk ∈ [0, 0.0098],



Hence

• λk’s are all positive and around 1.
• λ̄k’s are all positive and around 0.
• µk’s are all very close to 0.

Moreover, the maximum absolute values of the entries of

H2(Λ
opt, Λ̄

opt
,Γopt) is 0.0867, whereas the average abso-

lute values of the nonzero entries of H1(Λ
opt, Λ̄

opt
,Γopt)

is 4.1201.

IEEE 118-bus system Consider now the problem of
minimizing the total generation cost for the IEEE 118-
bus system. After adding some small resistance to certain
entries of Re{Y } to make the induced graph strongly
connected, the four smallest eigenvalues of the matrix

[

H1(Λ
opt, Λ̄

opt
,Γopt) H2(Λ

opt, Λ̄
opt

,Γopt)

−H2(Λ
opt, Λ̄

opt
,Γopt) H1(Λ

opt, Λ̄
opt

,Γopt)

]

are 0, 0, 1.3552, 1.3552. Hence, condition C1 is satisfied and
OPF can be solved by solving Dual OPF. The optimal
variables normalized by cl1 = 40 satisfy, for k = 1, . . . , n,

λk

cl1
∈ [0.8858, 1.0356],

λ̄k

cl1
∈ [−0.0063, 0.0118],

µk

cl1
∈ [0, 0.1894]

As before, (λk

cl1
, λ̄k

cl1
,
µk

cl1
) are around (1, 0, 0). In addition,

λk’s are all positive and most of λ̄k are positive (more
than 100 of them). As the last property, the maximum of

the absolute values of the entries of H2(Λ
opt, Λ̄

opt
,Γopt) is

13.8613, whereas the average of the absolute values of the

nonzero entries of H1(Λ
opt, Λ̄

opt
,Γopt) is 237.3938. Thus,

H2 is negligible compared to H1 as before.

The computation on the IEEE benchmark examples were
all finished in a few seconds and the number of iterations
for each example was between 5 and 20. Note that although
Optimization 2 is convex and there is no convergence prob-
lem regardless of what initial point is used, the number of
iterations needed to converge mainly depends on the choice
of starting point. It is worth mentioning that when dif-
ferent algorithms implemented in Matpower were applied
to these systems, some of the constraints are violated at
the optimal point probably due to the large-scale and non-
convex nature of the OPF problem. However, no constraint
violation have occurred by solving the dual of the OPF
problem due to its convexity.

5.2 Example 2: small systems

The IEEE test systems in the previous example operate in
a normal condition when the optimal bus voltages are close
to each other both in magnitude and phase. This example
illustrates that condition C1 is satisfied even in the absence
of such a normal operation. Consider three distributed
power systems, referred to as Systems 1, 2 and 3. Systems 2
and 3 are radial, while System 1 has a loop. The detailed
specifications of these systems are provided in Table 1
in per unit for the voltage rating 400kV and the power
rating 100MVA, in which z̄ij and ȳij denote the series
impedance and the shunt capacitance of the Π model of
the transmission line connecting buses i, j ∈ {1, 2, 3, 4}.

Table 1. Parameters of systems in Example 2.

Parameters System 1 System 2 System 3

z̄12 0.05 + 0.25i 0.1 + 0.5i 0.10 + 0.1i

z̄13 0.04 + 0.40i None None

z̄23 0.02 + 0.10i 0.02 + 0.20i 0.01 + 0.1i

z̄14 None None 0.01 + 0.2i

ȳ12 0.06i 0.02i 0.06i

ȳ13 0.05i None None

ȳ23 0.02i 0.02i 0.02i

ȳ14 None None 0.02i

Table 2. Constraints for systems in Example 2.

Constraints System 1 System 2 System 3

P d

2
+Qd

2
i 0.95 + 0.4i 0.7 + 0.02i 0.9 + 0.02i

P d

3
+Qd

3
i 0.9 + 0.6i 0.65 + 0.02i 0.6 + 0.02i

P d

4
+Qd

4
i None None 0.9 + 0.02i

V max

1
1.05 1.4 1

Table 3. OPF parameters from Optimization 2.

Recovered System 1 System 2 System 3

Parameters

V1 1.05∠0◦ 1.4∠0◦ 1∠0◦

V2 0.71∠−20.11◦ 1.10∠−25.73◦ 0.78∠−10.58◦

V3 0.68∠−21.94◦ 1.08∠−31.96◦ 0.76∠−16.31◦

V4 None None 0.95∠−10.82◦

Ploss 0.2193 0.1588 0.3877

Qloss 1.2944 0.7744 0.5343

Table 4. Lagrange multipliers obtained by solv-
ing Optimization 2 for systems in Example 2.

Lagrange Multipliers System 1 System 2 System 3

λ2 1.3809 1.4028 1.7176

λ3 1.4155 1.4917 1.7900

λ4 None None 1.0207
¯̄λ2 0.4391 0.2508 0.1764
¯̄λ3 0.4955 0.2633 0.1858
¯̄λ4 None None 0.0061

µ1 0.0005 0.0001 0.0005

The goal is to minimize the active power injected at slack
bus 1 while satisfying the constraints given in Table 2.

Optimization 2 is solved for each of these systems, and
it is observed that condition C1 always holds. The op-
timal solution of OPF recovered from the solution of
Optimization 2 are provided in Table 3 (Ploss and Qloss

in the table represent the total active and reactive power
losses, respectively). It is interesting to note that although
different buses have very disparate voltage magnitudes and
phases, the duality gap is still zero. The optimal solution
of Optimization 2 is summarized in Table 4 to demonstrate
that the Lagrange multipliers corresponding to active and
reactive power constraints are positive.

As another scenario, let the desired voltage magnitude at
the slack bus of System 1 be changed from 1.05 to 1. It
can be verified that the optimal value of Optimization 2
becomes +∞, which simply implies that the corresponding
OPF problem is infeasible.

We repeated several hundred times this example by ran-
domly choosing the parameters of the systems over a wide
range of values. In all these trials, the Algorithm prescribed
in Section 3 always found a globally optimal solution of the
OPF problem or detected its infeasibility.



6. CONCLUSIONS

We have studied the classical optimal power flow (OPF)
problem that is notorious for its difficult nonlinear con-
straints. For DC networks we have proven that the problem
has a convex semi-definite programming relaxation which
is always equivalent to the original problem. For AC net-
works, a similar semi-definite relaxation yields the exact
solution for the IEEE benchmark systems with 14, 30, 57,
118 and 300 buses, after a small resistance (10−5 per unit)
is added to every transformer.
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