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Abstract— Increased penetration of renewable energy sources
poses new challenges to the power grid. Grid integrated energy
storage combined with fast-ramping conventional generation
can help to address challenges associated with power output
variability. This paper proposes a risk mitigating optimal power
flow (OPF) framework to study the dispatch and placement of
energy storage units in a power system with wind generators
that are supplemented by fast-ramping conventional back-up
generators. This OPF with storage charge/discharge dynamics
is solved as a finite-horizon optimal control problem. Chance
constraints are used to implement the risk mitigation strategy.
The model is applied to case studies based on the IEEE 14 bus
benchmark system. First, we study the scheduling of spinning
reserves and storage when generation and loads are subject to
uncertainties. The framework is then extended to investigate
the optimal placement of storage across different network
topologies. The results of the case studies quantify the need
for storage and reserves as well as suggest a strategy for their
scheduling and placement.

I. INTRODUCTION

There is rapidly growing interest in replacing fossil fuel
based power generation with renewable energy sources. Fac-
tors driving this interest include increasing fossil fuel prices
caused by diminishing supplies [1] along with government
mandates [2] and incentives aimed at making the electricity
grid “greener.” High grid penetrations of solar or wind power
pose a number of operational challenges and it is widely
accepted that substantial changes to the power grid will be
needed for penetration levels above 20% [3]–[5].

A key strategy to address the challenges posed by the
intermittent availability of renewable sources is the use of
large-scale grid-integrated energy storage. The role of energy
storage in power systems has been extensively investigated.
An early simulation study in 1981 [6] confirmed the ben-
efits of quickly dispatchable batteries for peak-shaving and
power regulation. More recent investigations have focused
on the extent to which grid integrated storage can address
the challenges posed by renewable energy sources, e.g.,
[7], [8]. In systems with renewable energy, storage can be
used to minimize spilled energy [4], [5], [9], provide high
quality ancillary services and decrease the need for additional
transmission capacity [10].

Until now, the power industry has dealt with potential
failures using deterministic, worst-case dispatch [4]. This
approach, which is generally based an N-1 contingency
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criterion, has thus far also successfully accounted for load
variability [11]. However, a deterministic criterion is not
suitable for systems with high levels of uncertain power
supply. In these cases a worst case approach will lead
to unnecessarily large operating reserves, which are not
economically or environmentally efficient. Thus, a new grid
operating paradigm is needed to handle a large penetration
of highly variable power sources such as wind energy [10],
[12], [13].

The demand for new operating criteria has led to con-
siderable research activity. For example, the authors of [13]
compare the conventionally used N-1 contingency criterion
to other operating criteria based on generation and load vari-
ability. Probabilistic operating criteria, such as loss-of-load
probability (LOLP), were introduced in the market clearing
algorithm of [11] and this concept of stochastic security was
developed further in [14]. The authors of [4] propose a risk-
limiting dispatch formulation that limits the LOLP using
real-time information about generation and loads. Optimal
power flow (OPF) based approaches that include intermittent
generation have previously been investigated [15], [16].
However, these studies did not include energy storage.

The current work looks at risk mitigated OPF in a new
way by analyzing a system with a high penetration of wind
power and energy storage. Adding storage charge/discharge
dynamics to the risk mitigated OPF leads to a finite-horizon
optimal control problem, where risk-limiting (LOLP) con-
straints account for variability in power generation and loads.
Storage systems reduce the requirement of the operating
reserves to provide instantaneous power balance. Thus, the
objective is to minimize the cost of operating reserves while
limiting the LOLP through scheduling operating reserves and
energy storage. The reserves are assumed to be fast-ramping
conventional generators with some pre-allocated capacity.
Such planning of reserves and storage units in the face of
uncertainty is of interest to system operators who need to pre-
determine reserve capacity required for a given time horizon
(usually one day). However, the formulation is more general
in that it allows any pre-specified operating horizon. The
problem can then be solved iteratively in a so-called reced-
ing horizon setting whereby the increasingly accurate wind
forecasts available closer to the time of dispatch allows one
to further minimize the use and pre-scheduling of operating
reserves. Such an implementation may be of interest for so-
called fast energy markets. Finally, we extend the framework
to the complementary problem of how to distribute storage
capacity across different power networks. Our placement
results provide additional information over previous studies,
such as [10], [17], because the risk-limiting OPF captures



Fig. 1. Illustration of the planning horizon versus the reserve period at
time t = 0. The reserve period defines the time for which reserve capacity is
pre-allocated prior to performing the optimization. The finite-horizon OPF
is solved over the planning horizon.

system constraints arising from the network topology and
Kirchhoff’s laws.

The remainder of the paper is organized as follows.
The next section describes the problem setup. Section III
introduces the risk-limiting OPF with energy storage. Section
V illustrates its use through series of cases studies outlined
in Section IV. In Section V-C the framework is extended
to study the optimal placement of storage resources using
simple network topologies. The paper concludes with a
summary and discussion of directions for future work.

II. PROBLEM SETUP

Consider a network with a set of buses, N . The set G ⊂ N
of generation buses is connected by transmission links to the
set L ⊂ N of load buses, i.e., N = G ∪ L. The generation
gk(t) for k ∈ G and load (demand) di(t) for i ∈ N are
both given and treated as random variables. Fast-ramping
conventional generators (spinning reserves) with capacities
Sk(t) are co-located with the generators at buses k ∈ G,
whereas energy storage units are placed at each bus i ∈ N .

We define the planning horizon T with time steps t ∈
T := {0, 1, 2, . . . , T − 1} as the time period over which
the optimization takes place. The reserve period TR, with
time steps t = 0, . . . , (TR − 1) and TR ≤ T , denotes
the time for which maximum reserve levels Sk(t) at buses
k ∈ G are pre-determined. The reserve period represents
how far in advance operating reserves are scheduled, i.e.,
when TR = T we assume that the system operator has
pre-determined the maximum level of reserves for the entire
planning horizon, making Sk(t) := Sk fixed in time. When
TR < T the risk-mitigated OPF determines reserve levels
Sk(t) for t = TR, . . . , T −1. One may want to have TR < T
in a situation where a more accurate wind forecast becomes
available TR time steps in advance. In that case, the reserve
capacity Sk(t) for the time steps t > TR would be updated
with the improved estimate. Figure 1 illustrates the planning
horizon and the reserve period.

A. Power flows

The real power flow from bus i to bus j at time t ∈ T is

Pij(t) = |Vi(t)||Vj(t)|Bij sin(θi(t)− θj(t)),

where i, j ∈ N . |Vi(t)|, θi(t) are respectively the voltage
magnitude and angle at bus i. Bij = Bji is the line
susceptance between buses i and j. The susceptance matrix
B models the transmission links in the DC power flow
model, which is commonly regarded in dispatch problems.

We adopt this linear DC power flow approximation here.
Therefore, we assume that the voltage magnitudes |Vi(t)|
for all t ∈ T , i ∈ N are identically equal to the base
voltage Vo = 1 and that the voltage angle differences are
small enough that sin(θi(t) − θj(t)) ≈ θi(t) − θj(t) for all
i, j ∈ N . The resulting expression for the power flow is

Pij(t) = Bij [θi(t)− θj(t)] , (1)

where by abuse of notation we also use Pij(t) to represent
the linear approximation. The small angle assumption im-
posed in (1) can be enforced by requiring

|θi(t)− θj(t)| ≤ Θ, for i, j ∈ N and t ∈ T . (2)

Line power capacity limits p̄ij restrict heating of the lines
and enforce network stability requirements [18]. These limits
bound the power flow between nodes i and j at each t ∈ T
as

|Bij(θi(t)− θj(t))| ≤ p̄ij , for i, j ∈ N . (3)

As previously discussed, the operating reserves used
herein are fast-ramping conventional generators (or spinning
reserves) with capacity Sk(t) for k ∈ G. At time t ∈ T these
reserves are bounded as

0 ≤ sk(t) ≤ Sk(t), (4)

where Sk(t) is the maximum amount of reserves available
at time t. The lower bound in (4) reflects the fact that we
assume the reserves to be dispatchable and used in a manner
similar to ancillary services in the current power system
operating paradigm, i.e. at time t, sk(t) = 0 unless the
available power does not meet the demand (including storage
charging requirements).

At each time t ∈ T , the power flow into the energy storage
unit located at bus i ∈ N is denoted ri(t), where ri(t) can
either be negative (charging) or positive (discharging). This
flow in and out of the storage is constrained as

Rmini ≤ ri(t) ≤ Rmaxi , (5)

where Rmini < 0. The energy level of the storage at bus
i ∈ N at t ∈ T is then related to the charge/discharge rate
through the difference equation

bi(t) = bi(t− 1) + ri(t)∆t, (6)

where ∆t is the length of the time step and the initial
condition is bi(0) = b0 ≥ 0. The storage level is bounded
by each unit’s maximum capacity Emaxi such that

0 ≤ bi(0) +

t∑
t̃=0

ri(t̃) ≤ Emaxi , (7)

for each i ∈ N and every t ∈ T . We also require the energy
storage level at the final time to be at least as much as at the
beginning of the interval, which is captured by

bi(0) ≤ bi(0) +

T∑
t̃=0

ri(t̃) ≤ Emaxi , for i ∈ N . (8)



Fig. 2. The in- and out-flow of power at bus i ∈ N . For i ∈ L, gi(t) =
and si(t) = 0.

B. Risk mitigation strategy

Under normal operating conditions, the total power in- and
out-flows at each bus, shown in Figure 2, must balance, i.e.

gi(t) + si(t) = di(t) + ri(t) +
∑
j 6=i

Bij [θi(t)− θj(t)] (9)

for i ∈ N and t ∈ T .
Remark 1: An inequality can also be used in (9) (i.e.,

gi(t) + si(t) ≥ di(t) + ri(t) +
∑
j 6=iBij [θi(t)− θj(t)])

because load balancing is a minimal requirement. As is the
current practice, when the wind power availability exceeds
demand, excess power can be curtailed.

In a situation with a high penetration of variable renewable
energy sources, power balance at each time-step becomes a
stochastic problem. The LOLP can then be defined as a risk
measure to evaluate compliance with operating conditions.
To this end, we define the margin Mi(t) between the power
in-flow and the power out-flow at bus i ∈ N and time t ∈ T
as

Mi(t) :=gi(t) + si(t)

−

di(t) + ri(t) +
∑
j 6=i

Bij (θi(t)− θj(t))

 .
As discussed above, gi(t) and di(t) are given and treated as
random variables. We set gi(t) = 0 if i ∈ N\G.

Consider a given scalar 0 ≤ εi ≤ 1 that defines the
accepted risk level, i.e., a bound on the LOLP at bus i. We
define the following probabilistic operating criterion

Prob {Mi(t) ≥ 0} ≥ 1− εi (10)

for all i ∈ N and times t ∈ T . Constraints such as the one
in (10) are so-called chance constraints (see e.g. [19]), which
we now reformulate using the theory given in e.g. [20].

Consider the random variable a such that

Prob
{
aTx ≤ b

}
≥ η (11)

and η ≥ 0.5. If a is normally distributed with mean µ and
covariance Σ, then Prob

{
aTx ≤ b

}
= Φ

(
b−µT x√
xT Σx

)
, where

Φ is the cumulative distribution function. Now (11) can be
rewritten as

b− µTx ≥ Φ−1(η)||Σ1/2x||2, (12)

where η is the confidence level.
We assume that load and wind power estimates, dk(t) and

gk(t) in (9), are normally distributed. A normal distribution

is a standard assumption for loads [21]. In general, wind
power output is a nonlinear function of wind speed, which is
assumed to be Rayleigh distributed [22]. Here, as in a number
of other studies, e.g. [14], [23], the normal approximation of
wind power forecasts is used for mathematical convenience.
In addition, the use of this assumption can be attributed
to the fact that we are modeling a wind powered grid,
which implicitly assumes a large number of geographically
dispersed wind farms. The law of large numbers indicates
that statistical smoothing effects due to the geographical
dispersion of a large number of wind farms may result
in the aggregate power approaching a normal distribution,
as seen in studies such as [24]. The normality assumption
allows for a simple reformulation of the chance constraint
of (11). However, the formulation can also be studied with
other distributions by introducing additional mathematical
machinery such as Chernoff’s bounding method, see e.g.
[25]. That method allows probability distribution functions
from the exponential family to be reformulated into deter-
ministic bounds. However, the results obtained may be more
conservative because they can only provide lower bounds on
the probabilities, whereas a normal distribution provides an
equivalence between (11) and (12).

Let the means and covariances of wind generation and
loads be ḡi(t), ΣGi and d̄i(t), ΣDi respectively and define
M i(t) := b−µTx. Then using (11) and (12), the risk-limiting
constraint (10) becomes

M i(t) ≥ Φ−1(1− εi)||(ΣGi + ΣDi )1/2||2 (13)

for i ∈ N , t ∈ T . Here, the parameters in (12) are defined
as

µT (t) := −(ḡi(t)− d̄i(t)), and

b := −ri(t) + si(t) +
∑
j

Bij(θi(t)− θj(t)).

III. RISK-LIMITING OPF
The goal of the risk-limiting OPF is to schedule the use of

fast-ramping generators (reserves) and energy storage units
over the finite time horizon T with minimal cost. Capital
costs are not considered in this analysis.

Let the cost of allocating spinning reserve capacity Sk(t)
for t outside the reserve period (as shown in Figure 1) be
given by

cR(S) :=
∑
i∈G

T−1∑
t=TR

Hi(Si(t), t). (14)

We define cost of using reserve power sk(t) as

cs(s) :=
∑
i∈G

T−1∑
t=0

hi(si(t), t) (15)

and denote the cost of storage use by cB(r).
The risk-limiting OPF problem with energy storage is then

min cs(s) + cR(S) + cB(r) (16)

subject to (2)−(8) and (13) over the decision variables
ri(t), θi(t) for i ∈ N and t ∈ T , sk(t) for k ∈ G and
t ∈ T , and Sk(t) for k ∈ G and t = TR, . . . , T − 1.



A. Optimal storage placement

The risk-mitigated OPF framework can be extended to
investigate the optimal distribution of storage throughout the
network. This is an important system design question for
system planners who need to determine the optimal location
to build a storage facility or to evaluate the benefit of siting
storage at the loads versus with generation plants.

To study these issues we change the storage capacity
Emaxi limit at each bus i ∈ N in (7) from a given fixed
value to a decision variable. We also add a total storage
capacity constraint that bounds the sum of these new decision
variables as ∑

i∈N
Emaxi ≤ Etot. (17)

The storage charge/discharge rate remains bounded as in (5).
This optimal storage placement problem then distributes a
given amount of storage capacity with given power ratings
over all of the available buses under the constraints (3) - (8),
(10) and (17) while minimizing the cost function (16).

IV. CASE STUDIES

We study the risk-limited OPF problem using the topology
of the IEEE 14 bus benchmark system [26], which is rep-
resentative of a portion of the Midwestern US transmission
grid. This section describes the data sources and parameters
used for the case studies discussed in Section V. The opti-
mization problem was implemented numerically as a semi-
definite program in MATLAB and solved for various cost
functions and reserve periods using YALMIP [27].

A. Wind generation data

The IEEE 14 bus test case contains five generator buses.
Generation profiles for these were created using data from
five Southern Californian locations provided by the National
Renewable Energy Laboratory (NREL) [28]. At each loca-
tion, the data for five individual wind turbines was averaged
at 10 minute intervals for the month of July 2006. The
statistics for an average July day were then computed using
the 31 days of data. The generation curves were then scaled
so that the total energy produced over the 24 hour period
matched the total demand, i.e.

∑
i∈N

∑T
t=0(gi(t)−di(t)) =

0. This allows us to assume that the installed wind capacity
is sufficient to cover the average demand. The top panel
of Figure 3 shows the average generation profiles for the
5 generation buses.

B. Load data

Load profiles were created using normalized demand data
from 14 typical Southern California feeders1 for the month
of July 2010. The data was interpolated to obtain points sep-
arated by ten minute intervals to match the wind generation
data. Statistics were obtained by averaging over the 31 days
of the month for each of the 14 load buses. The demand
curves as well as the covariances were then scaled so that
the peak values on the demand curves match the loads in the

1Data was provided by Southern California Edison

IEEE 14 bus test case. The bottom panel of Figure 3 shows
the resulting demand profiles for each bus.
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Fig. 3. Generation profiles for the five generator buses based on five
Southern Californian wind farms (upper). Demand data for 14 typical
feeders (lower). The data represents the generation and demand for an
average day in July. These figures are plotted with hourly sub-sampling
of the data.

C. Risk and uncertainty parameters

The LOLP is limited by the constraint (13). We call the
right hand side of (13) for each bus i ∈ N the confidence
margin because it represents the additional supply (i.e. over
the required quantity from the right hand side of (9)) which is
needed to produce the desired confidence level 1−εi in (10).
This depends on the assumed risk level ε and the combined
covariance of generation and load. The upper panel of Figure
4 illustrates the multiplicative factor Φ−1(1 − ε) in (13) as
a function of ε.

The lower panel of Figure 4 illustrates the confidence
margin’s dependence on the variance, where the variance
is given as a percentage of the nominal generation (2 p.u.,
i.e., the total generation). Here, the load variance is kept
constant (at 5% of 2 p.u.) and the risk level is set to ε = 5%.
Although this plot is a simplification of the relation used in
the case studies, it demonstrates the relationship between the
generation variance and the confidence margin.

The covariances over a one day planning horizon are
computed using a full month of statistics. This procedure
results in a very large standard deviation, which is partially
due to the data’s large intra-day fluctuations. In particular,
the data includes days when the generators were out of
use. Therefore, we reduce the variance in our data using
a model based on the one suggested in [29]. Even with
this modification, actual wind power forecasts for a given
planning horizon are generally more accurate than the data
used herein, see e.g. [30]. The curve in the lower panel of
Figure 4 shows that this overestimate of the variance means
that the results obtained here will be conservative. The use of
more accurate wind and load prediction models can improve
the risk-limiting OPF based predictions for reserve and stor-
age requirements, especially when used within the receding



horizon implementation described in the introduction. This
is a topic of ongoing research.

Fig. 4. Upper: the multiplicative factor Φ−1(1 − ε) from equation (13)
as a function of the risk level ε. This function is the inverse cumulative
distribution function of the normal probability distribution function. Lower:
the confidence margin, i.e. the right hand side of equation (13), as a function
of the variance in generation relative to the nominal generation 2 p.u., with
load variance = 0.1 p.u. and ε = 5%.

V. RESULTS AND DISCUSSION

In this section we apply the risk-limiting OPF described
in Section III to the case studies described in the previous
section. We use it to investigate the scheduling of storage and
fast-ramping generators using two different reserve periods
(TR). We then apply the modified framework described in
Section III-A to determine how the optimal placement and
sizing of storage varies with network topology. The risk level
and bound on the angle difference in (2) are respectively
εi = 5% ∀i ∈ N and Θ = 10◦ for all of the examples,
unless otherwise indicated. In Examples I and II we assume
the storage units have maximum charge (discharge) rates
Rmaxi = −Rmini = 0.5 p.u. and capacities Emaxi = 1.5
p.u. for all i ∈ N .

A. Example I

We first consider the case where spinning reserves are
pre-allocated for the entire planning horizon, i.e. the reserve
period and planning horizons in Figure 1 are equal, TR = T .
We fix the spinning reserve limit so that Si(t) = 1 p.u. for
all i ∈ G and t ∈ T . The cost function (16) is made up
of quadratic functions H(Si(t)) and h(si(t)), and a linear
function cB(|ri(t)|), with constant coefficients that are the
same at all buses i ∈ G.

The bottom panel of Figure 5(a) provides a comparison
between the total generation-load balance, the confidence
margin as well as the fulfilment of the operating criterion
(13). Here, it is clear that the generation exceeds the demand
until t = 10 h. During this time the storage charges as is
seen in the center panel of Figure 5(a). Later in the day,
the storage is discharged. The storage is thus combined with
spinning reserves to compensate for the generation deficits

plus the confidence margin, as depicted in bottom panel of
Figure 5(a).

It should be noted that in Example I the full storage
capacity is not used. This is because there is never enough
surplus energy to both completely charge the storage and
compensate for the confidence margin. As expected, the
spinning reserves are not used to charge the storage because
that would increase the value of the cost function.

B. Example II

We now consider the case where the reserve period is 6
hours, i.e. TR = 1

4T , with pre-allocated reserves Si(t) = 1
p.u. for all i ∈ G and t = 0, . . . , TR − 1. The top and
center panels of Figure 5(b) show that this scenario results in
the pre-allocated spinning reserves fully charging the storage
units during the reserve period. The storage units are then
able to minimize the use of reserves later in the day. This
behavior is due to the fact that the cost function (14) does
not penalize the use of spinning reserves during the reserve
period (t < TR). It should also be noted that the spinning
reserve use in the center panel of Figure 5(b) is piecewise
constant due to the quadratic cost function.

The use of reserve capacity to charge energy storage
units during off-peak hours is reasonable from a market
perspective when low-cost, high efficiency storage is readily
available, e.g., in regions where pumped storage is abundant.
As mentioned in the introduction, this strategy may also be
advantageous from a congestion management perspective de-
pending on the placement of the storage. Storage efficiencies
need to be added in order to obtain a complete understanding
of the trade-offs between fast-ramping generation based
reserves and storage. This is a subject of ongoing research.

C. Optimal placement problem

In this section we use simple grid topologies to investigate
the optimal placement problem introduced in Section III-
A. Simple topologies allow us to more easily isolate the
effects of transmission and network constraints. We expect
the insights gained in this simple setting to be applicable
to more general network topologies. The three topologies
(one 3-node ∆ and two 4-node Y) that we investigate are
shown in Figure 6. The properties of these networks are
again modeled by the susceptance matrix B, where a low
susceptance implies a long transmission line. Long lines are
of particular interest because of the wide separation between
generation and load that will result from geographically
isolated wind farms being added to the grid [31].

This study uses sinusoidal generation and demand curves
with a π

2 shift between them. There are equal loads at all
buses and the generation is scaled so that the total generation
aggregated across the time interval (24 hours) covers the
similarly aggregated total demand. Sinusoids were chosen
to approximate the shapes of the previously described data
profiles, shown in Figure 3.

For all of the cases tested, any uneven distribution of
storage over the network favored a larger share being placed
on the generator bus. Therefore, to describe the results in
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Fig. 5. Results of optimization program (a) with reserve horizon equal to the planning horizon and (b) with reserve period TR = 6h. The figures show
storage levels (usage) at each of the 14 buses (top) and spinning reserve usage at the five generator buses (middle) compared to the total generation-load
balance and the operating criterion (bottom), where (xi)tot denotes

∑
i∈N xi.

(a) (b) (c)

Fig. 6. Simplified topologies used to study optimal storage placement. (a)
and (b) are 4-bus networks with one generator at bus 1 and 2 respectively
and three load buses. (c) is a 3-bus topology with one generator at bus
1 and two symmetrically placed loads. The line impedances, in this case
purely reactive, are indicated on the lines. The susceptance of each line is
the inverse of its reactance.

this section we discuss the percentage by which the generator
bus storage capacity exceeds the average capacity at the other
buses. Figure 7 depicts this quantity for a number of different
test settings. It shows that the advantage gained by placing
more storage at the generator bus is largely a function of the
power flow line limits (3). This dependence is illustrated by
altering the angle bound Θ in (2). Θ = 10◦ permits a larger
power flow and results in more evenly distributed storage
than Θ = 5◦, (note that both angles are well in the limits
of the small angle assumption). The diagram in Figure 7
also illustrates the strong dependence on the total storage
capacity. The topology also plays a role, for example the
one in Figure 6(a) favors placing storage at the generator
bus more than the other two topologies in Figure 6.

These results can be interpreted as follows. Since the DC
power flow approximation models a lossless system, having
to transmit power through the network does not have any
disadvantages. Therefore when there is enough capacity, an
even distribution of the storage is preferable because it can
maximize the total power rate delivered by the storage units
when the rate is independent of the capacity (as in the current

Fig. 7. Result of placement problem for topologies given in Figure 6
given as the percentage with which the storage capacity at the generator
node exceeds the mean capacity at the other nodes, with different total
capacities and power flow constraints. ”Top (a)”, ”Top (b)” and ”Top (c)”
refer to the topologies of Figure 6(a)-6(c) respectively.

study). However, when the transmission capacity is limited
such that the peak generation can not be transmitted, it is
advantageous to store the energy where it is generated. The
storage then discharges when there is no congestion. This
strategy is increasingly favored as the storage capacity and
isolation of the generator bus is increased, as illustrated by
the results for topology (a), which has the longest distance to
the load buses. When the generator is moved to bus 2 in the
same topology (b), power can be transmitted through more
than one line and less storage is needed at the generator. For
these reasons, buses with very high loads and highly inter-
connected nodes may also be strategic for storage placement.

VI. SUMMARY AND POTENTIAL EXTENSIONS

We have formulated an optimal power flow problem with
risk-limiting constraints to study the scheduling of spinning
reserves and energy storage as a finite-horizon optimal con-
trol problem. Our formulation models the pre-allocation of
reserves for a portion of the planning (optimization) horizon.



A natural extension of this work would be a receding horizon
implementation, where the pre-allocation for some reserve
period is determined at each update. Such a framework
may be useful in studying different market strategies for
scheduling of reserves. For example, day-ahead versus hour-
ahead markets could be compared by changing the reserve
period described in Figure 1.

We used this risk-limited OPF to investigate the effects
of wind and load variability on the scheduling of spinning
reserves and storage units using case studies based on the
IEEE 14 bus benchmark system. We modeled an extreme
case with wind as the primary energy source and compensate
for the variability using reserves that are allocated based
on probabilistic operating criteria. The reserve requirements
computed in our study represent a worst-case scenario be-
cause no wind or load forecasting is modeled. More accurate
wind prediction models, time correlations and data forecast-
ing techniques for wind and load data are directions for
future work. Data forecasting techniques would be especially
beneficial in the receding horizon framework.

The storage placement problem introduced here would
benefit from the extension of this framework to an AC power
flow setting and the introduction of storage efficiencies. In
the lossless DC power flow model discussed herein co-
locating storage with wind seems to be a preferable strategy.
However, the results may differ when transmission losses and
voltage drop are included in the analysis. In addition, the
use of storage efficiencies would permit cost benefit analysis
of different storage technologies and determine whether the
type of storage plays a role in placement decisions. Both of
these topics are subjects of our ongoing research.
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