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Abstract—The renewable energy generation such as solar and
wind will constitute an important part of the next generation grid.
As the variations of renewable sources may not match the time
distribution of load, energy storage is essential for grid stability.
Supplemented with energy storage, we investigate the feasibility
of integrating solar photovoltaic (PV) panels and wind turbines
into the grid. To deal with the fluctuation in both the power
generation and demand, we borrow the ideas from stochastic
network calculus and build a stochastic model for the power
supply reliability with different renewable energy configurations.
To illustrate the validity of the model, we conduct a case study for
the integration of renewable energy sources into the power system
of an island off the coast of Southern California. Performance
of the hybrid system under study is assessed by employing the
stochastic model, e.g., with a set of system configurations, the
long-term expected Fraction of Time that energy Not-Served
(FTNS) of a given period can be obtained.

I. INTRODUCTION

The need to reduce greenhouse gas emissions is moving
its attention to more environmentally-friendly and sustain-
able energy sources. Alternative energy resources such as
solar and wind has greatly increased investment due to their
environmental friendliness and decreasing prices of turbines
and photovoltaic (PV) panels. There is an emerging trend
that the next-generation grid will feature renewable-energy
sources to reduce the carbon footprint of the grid, making it
greener. However, renewable energy sources tend to be highly
variable: solar energy goes to the grid during the day, wind can
pick up power at night. The drawback, common to solar and
wind options, is their unpredictable nature and dependence on
weather and climatic changes, and the variations of solar and
wind energy may not match with the time distribution of load
demand.

The integration of renewable energy resources into the
electric grid presents challenges due to the intermittency in
the power generation. These difficulties can be alleviated by
effectively utilizing intermediate energy storage, such as bat-
teries to improve power reliability and balance the integration
of renewable wind and solar energy into the large generation
portfolio. Advanced storage technology plays an important
role in smoothing the gap between supply and demand. It is
recently reported that the Los Angeles Department of Water
and Power (LADWP) has formed a partnership with BYD
Ltd. Corp. on a grid-scale battery project for renewable energy
storage, which will lead to the development of a power storage

unit up to 10 MWh [13]. It is quite promising that the grid
would incorporate large power storage unit in the near future.

Prior to construction of a renewable generation station, it
is necessary to determine the optimum number of PV panels
and wind turbines to continuously match generated energy
and desired consumption, although both can change dramati-
cally over time period of a few hour. Aggregating inherently
stochastic power sources to achieve reliable electricity supply
is a non-trivial problem. Various optimization techniques for
hybrid PV/wind systems sizing have been proposed in the liter-
ature [12], such as probabilistic approach [10] [14], graphical
construction technique [9], artificial intelligence methods [11],
and iterative technique [15].

By careful examination of the Internet and the grid, we
show how similar Internet concepts can be used to address
the above problem in the development of a green grid, as both
the Internet and the electrical grid are designed to provider
some services, i.e., for information and energy respectively.
The provision of stochastic service guarantees motivates us
to use stochastic network calculus, and we initiate a dialogue
between these two communities. Network calculus [8] is a
theory that uses bounds to deal with queuing systems in com-
puter networks, whose focus is on performance guarantees.
Its essential idea is to use alternative algebra to transform a
complex non-linear system into an analytically tractable linear
system.

However, solutions to problems in the communication net-
work research could not be directly applicable to the grid.
We define the energy supply curve in the power grid, which
is different from service curve in network calculus whose
definition is coupled with the arrival curve [6][7][8]. In
addition, in stochastic network calculus [1], by assuming a
lossless system, results obtained from the backlog analysis
are used directly to approximately describe the loss, which
leads to loose bounds. Based on the virtual queueing system
in the power network, we derive a non-recursive formula
for the buffer overflow probability, and further derive the
performance metrics in concern. By adjusting and modify-
ing the framework of stochastic network calculus, we then
build a stochastic model to analyze the achievable level of
performance with given system configurations. To illustrate
the validity of the model, we conduct a case study for the
integration of renewable-energy sources into the power system
of an island off the coast of Southern California. Performance
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Fig. 1. Schematic of the hybrid power system

of the hybrid system under study is assessed by employing the
stochastic model, e.g., with a set of system configurations, the
long-term expected Fraction of Time that energy is Not-Served
(FTNS) of a given period can be obtained.

The paper is organized as follows. We first present the inte-
grated system considered in this paper in Section 2. Borrowing
the ideas from stochastic network calculus, we define the en-
ergy demand and supply processes, and then build a stochastic
model for the power system. In Section 3, the performance
metrics of interest are derived. In the following section, we
conduct a case study for the integration of renewable-energy
sources into the power system of an island. Performance of
the hybrid system under study is assessed by employing the
stochastic model. Finally, we summarize the contributions of
this paper and conclude in Section 5.

II. POWER SYSTEM MODELING

A. Problem Description
We consider a scenario where the electric network is sup-

plied by a combination of solar PV panels, wind turbines and
battery. A hybrid system consists of solar PV, wind turbine,
battery, and controller etc., as shown in Fig. 1. The PV
panels and wind turbines work together to satisfy the load
demand. When the energy sources are abundant, the excess
power generation will feed the battery until it is fully charged.
Whenever there is a deficiency in power, the battery will be
discharged to cover the load requirements until the energy
storage is depleted.

In the face of fluctuations in both power load and generation,
we try to investigate the effects of energy storage on the
power supply reliability in configurations with different levels
of renewable generation. We are interested in quantifying the
Loss of Power Supply Probability (LPSP) at a given time,
as well as the long-term expected Fraction of Time energy
Not-Served (FTNS) during a time period. In general, the
LPSP/FTNS is a function of the total area Np of PV panels,
the number Nw of wind turbines, and the specified capacity
C of battery storage (other factors are ignored here). They
are design-time decisions to be made before investing in the
deployment of renewable energy sources and energy storage.

B. Formulation and Notations
The hybrid solar-wind system design depends on the perfor-

mance of individual components. In order to predict the sys-

tem’s performance, individual components should be modeled
and then the reliability of the overall system can be evaluated.
The stochastic nature of the load and renewable generation
feature fluctuations motivates us to build a system model based
on similar concepts in stochastic network calculus [1][6].

Consider a power system where the time axis T is dis-
cretized into 1 hour. In time interval [0, t], (t ≤ T ), we
denote by D(t) the cumulative amount of energy demand
in the system (in MWh); by S(t) the cumulative amount of
energy supply in the system. We call D(t) the energy demand
process, and S(t) the energy supply process of the system,
with D(0) = S(0) = 0. For any 0 ≤ s ≤ t, we denote
D(s, t) = D(t)−D(s), and S(s, t) = S(t)− S(s).

In this paper, we use [x]+ to denote the maximum of a
given number of x and 0, i.e., [x]+ ≡ max{x, 0}. The Min-
plus Convolution of functions a(x) and b(x), denoted by ⊗,
is defined as follows:

(a⊗ b)(x) = inf
0≤y≤x

[a(y) + b(x− y)]. (1)

C. Modeling of Energy Storage
Depending on the PV and wind energy production and

the energy demand, the state b(t) of battery at time t can
be calculated as follows: If the energy generated from the
PV/wind system is greater than the load for a particular hour,
the energy surplus is stored in the battery and the battery is
charged:

b(t) = min[C, b(t− 1) + [S(t− 1, t)−D(t− 1, t)]ηc], (2)

where ηc denotes the charge efficiency of the battery. When
the battery reaches its maximum value, which is determined by
the specified battery capacity C, any excess energy generated
cannot be charged and is wasted.

When the energy demand is greater than the supply for a
particular hour, the battery will be discharged to supplement
the supply. In this case, the new state of the battery is:

b(t) = [b(t− 1)− [D(t− 1, t)− S(t− 1, t)]ηd]
+, (3)

where ηd denotes the discharge efficiency of the battery. Due
to the physical constraints, the minimal quantity level of
battery is determined by the maximum depth of discharge. If
the battery decreases to its minimum value C0, the deficient
energy demand cannot be meted out from the battery system,
and we call this loss of power supply at time t. In this paper,
we suppose ηc = ηd = 1 and C0 = 0.

D. Modeling of Energy Demand
In order to guarantee a certain level of performance, the

energy demand must be limited. Intuitively, a deterministic
demand curve implies that the amount of energy demand in
any time interval (s, t] is upper-bounded by some function
α(t − s). By introducing a violation probability, we can find
its stochastic counter-part. Throughout this paper, we assume
all demand curve, supply curve functions are non-negative and
non-decreasing, and all bounding functions are non-negative
and non-increasing.
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Definition 1: A energy demand process D(t) is said to have
a stochastic demand curve α(t) with bounding function εd,
denoted by D ∼ �εd,α�, if for all t ≥ 0 and all x ≥ 0, there
holds

P{ sup
0≤s≤t

[D(s, t)− α(t− s)] > x} ≤ εd(x). (4)

E. Modeling of Energy Supply
The supply curve defines a lower bound on the energy

provided by the power generator. Also by introducing a
violation probability, we can make sure that the power supply
process is above some lower bound with a high probability.

Definition 2: A energy supply process S(t) is said to pro-
vide a stochastic supply curve β(t) with bounding function
εs, denoted by S ∼ �εs,β�, if for all t ≥ 0 and all x ≥ 0,
there holds

P{ sup
0≤s≤t

[β(t− s)− S(s, t)] > x} ≤ εs(x). (5)

F. A Word on Model Tightness
Generally speaking, there is a tradeoff between the energy

demand curve and its bounding function. We can tune the
demand curve by relaxing the function α(t). These relaxations
are critical to the derivation of a tight bounding function,
and we can get series of energy demand curves. We should
neither select a very loose demand curve to make the bounding
function small, nor use a very tight demand curve such that the
bounding function becomes meaningless. Based on an existing
one with a given acceptable range on the bounding function,
we can search for a tighter demand curve within the given
tolerance bound as long as it exists.

Similarly, when we select a energy supply curve, we need
to make the tradeoff between the tightness of the supply curve
and the usefulness of the bounding function. Given a supply
curve and the tolerance bound for the bounding function, we
can also search for a tighter supply curve in the same way to
the demand curve.

III. SYSTEM RELIABILITY ANALYSIS

However, the concepts of stochastic network calculus could
not be applied directly to the power network. In network
calculus, the service characterization is linked to the traffic
arrival [1][8]. In power system, however, the definition of
energy generation and load are decoupled. In addition, with
the definition of backlog in network calculus, it could only
be derived if both the arrival process and departure process
of a queue were known [1][6][7][8]. In the virtual queueing
system below, there is no such ”energy departure process” in
correspondence to the energy demand process. We have to
adjust the theory framework to analyze the power system.

A. Queueing Principles of the Power System
We then analogize the energy demand and supply to a virtual

queueing system. Without loss of generality, the battery is fully
charged initially. Regarding the power demand as the arrival
of the queue, the energy supply as the service provided by the

queue, then the buffering process of the virtual queue could
be considered as the discharging process of the battery. We
denote the buffer for the virtual queueing system at time t as
B(t), which can be considered as the deficit energy storage
of the system, and we have B(t) = C − b(t).

When the energy generated is greater than the energy
demand in a certain period of time, as long as the maximum
battery capacity is not reached, the buffer decreases which
means that it is charged. When the load is greater than the
energy supply in a time period, the buffer increases, i.e., the
battery is discharged until it decreases to the minimum level.
Given the actual storage capacity at time t, C(t), we have:

B(t) = min[C(t), [B(t−1)+D(t−1, t)−S(t−1, t)]+], (6)

where C(t) may not be equal to the specified storage capacity
C, i.e., it might varies as physical/environmental conditions
change. We assume that the actual storage capacity C(t) = C,
for t > 0, and C(0) = 0. As assumed above, the battery is
fully charged in the beginning, i.e., B(0) = 0. We can derive
a non-recursive identity for the virtual buffer size:

B(t) = inf
0≤s≤t

[ sup
s≤u≤t

[D(u, t)−S(u, t), D(s, t)−S(s, t)+C(s)]].

(7)
Due to space limitations, here we only show a sketch of

the proof for (7). We can first prove B(t) ≤ sup
s≤u≤t

[D(u, t)−

S(u, t), D(s, t) − S(s, t) + B(s)] by induction. With B(t) ≤
C(t), we could get B(t) ≤ inf

0≤s≤t
[ sup
s≤u≤t

[D(u, t) −

S(u, t), D(s, t)− S(s, t) +C(s)]]. Also with the assumption,
we have B(0) = C(0) = 0, and there must be some
s = sup{v|B(v) = C(v), 0 ≤ v ≤ t}. The proof is
completed as there exits an s, 0 ≤ s ≤ t, such that
B(t) = sup

s≤u≤t
[D(u, t)− S(u, t), D(s, t)− S(s, t) + C(s)].

B. Performance Metrics
For a specified energy storage capacity C, we are interested

in the probability that the energy demand cannot be met by the
generation and the stored energy in the battery. In time slot t,
(t ≥ 1), if [B(t−1)+D(t−1, t)−S(t−1, t)]+ > C, we call
this Loss of Power Supply (LPS) at time t, which is dependent
on the storage capacity C, which satisfies LPS(C, t) = [B(t−
1) +D(t− 1, t)− S(t− 1, t)− C]+. Applying (7),

LPS(C, t) = inf
0≤s≤t−1

[ sup
s≤u≤t−1

[D(u, t)− S(u, t)− C,

D(s, t)− S(s, t) + C(s)− C]+] (8)

With the battery storage capacity C (in MWh), the Loss
of Power Supply Probability LPSP (C, t) at time t equals
to P{LPS(C, t) > 0}. The long-term expected Fraction
of Time energy Not-Served (FTNS) over the period [0, T ],
FTNS(C, T ), is given by:

FTNS(C, T ) =
1

T
ΣT

t=1LPSP (C, t). (9)

Give a storage capacity C, we introduce the following
theorem to calculate the LPSP (C, t).
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Theorem 1: (Loss of Power Supply Probability) For a vir-
tual queue in the power network, if the energy demand process
has a stochastic demand curve α with bounding function εd,
i.e., D ∼ �εd,α�, and the system provides a stochastic supply
curve β with bounding function εs, i.e., S ∼ �εs,β�, then for
all t ≥ 0 and all x ≥ 0, given storage capacity C, LPSP (C, t)
can be calculated by:

LPSP (C, t) = P{LPS(C, t) > 0}
≤ εd ⊗ εs(C − sup

0≤s≤t
[α(s)− β(s)]). (10)

To prove Theorem 1, we first introduce a lemma as follows,
which based on the min-plus convolution [1].

Lemma 1: For any random variables X and Y , with
their complementary cumulative distribution functions (CCDF)
F c(x) and Gc(x). No matter whether they are independent or
not, if F c(x) ≤ εf (x) and Gc(x) ≤ εg(x), there holds,

P{X + Y > x} ≤ F c(x)⊗Gc(x) ≤ εX ⊗ εY (x) (11)

With Lemma 1, we then prove Theorem 1 as follows:
Proof: From (8), we have that for t ≥ 1,

P{LPS(C, t) > 0} = P{ inf
0≤s≤t−1

[ sup
s≤u≤t−1

[D(u, t)

− S(u, t)− C,D(s, t)− S(s, t) + C(s)− C]] > 0}. (12)

For the right hand side, we have:

inf
0≤s≤t−1

[ sup
s≤u≤t−1

[D(u, t)− S(u, t)− C,

D(s, t)− S(s, t) + C(s)− C]]

≤ sup
0≤u≤t

[D(u, t)− S(u, t)− C,D(0, t)− S(0, t)− C]

= sup
0≤s≤t

[D(s, t)− S(s, t)− C]

= sup
0≤s≤t

[D(s, t)− α(t− s) + α(t− s) + β(t− s)

− β(t− s)− S(s, t)]− C

≤ sup
0≤s≤t

[D(s, t)− α(t− s)] + sup
0≤s≤t

[β(t− s)− S(s, t)]

+ sup
0≤s≤t

[α(s)− β(s)]− C. (13)

The right-hand side of (13) indicates a sufficient condition
for P{LPS(C, t) > 0}. With P{ sup

0≤s≤t
[D(s, t) − α(t − s)] >

x} ≤ εd(x), P{ sup
0≤s≤t

[β(t − s) − S(s, t)] > x} ≤ εs(x), the

theorem is proved based on Lemma 1.

IV. CASE STUDY

A. Description of the Data Set
As a case study, we consider the Santa Catalina Island,

which is 26 miles off the coast of Southern California, USA.
It is with 76 square miles in area and has 54 miles of
coastline. Currently, the electricity on Catalina is generated
from a central diesel plant, and the island is served by three
12kV distribution circuits which are separate from the grid on
the California mainland. It is desirable to reduce diesel-based
generation for both environmental and economical reasons.

This paper aims to investigate the feasibility of replacing diesel
generation with generation from renewable resources.

We use data profiles including power load, solar PV gen-
eration, and wind generation for analytical study. The hourly
variation of data profiles for 31 days in January, 2010 are
shown in Fig. 2, 4, and 6. They are obtained at geographical
locations near Santa Catalina Island with similar meteorolog-
ical characteristics:

• Energy generation profile: Based on the typical meteoro-
logical year (TMY) data sets derived from the National
Solar Radiation Data Base (NSRDB) archives [2], the
hourly per unit (35m2) solar PV energy generation data
for Long Beach, California, is calculated using the Sys-
tem Advisor Model [3]. The hourly energy generation
data for a wind turbine located off an island near Santa
Barbara, California is obtained from Western Wind Re-
sources Data set from the National Renewable Energy
Laboratory (NREL) [4].

• Load profile: The peak values for Santa Catalina Island
are obtained by personal communication with researchers
from Southern California Edison [5].

The cumulative per unit solar generation, per turbine wind
generation and load profiles are depicted in Fig. 3, 5, and 7.
With the typical power load and generation profiles for certain
period, we address the design question: given the different
renewable resource configurations, what are the appropriate
amounts of battery storage capacity needed to ensure a certain
level of power supply reliability?

B. Performance Evaluations
With the data given above, using curve fitting, we could

get the bounding function with respect to the stochastic
demand/supply curve according to Definitions 1 and 2. The
demand/supply curve function is based on the measure of the
long time mean rate. As the bounding function is non-negative
and non-increasing function, here we use some convex expo-
nential decay functions to fit the bounding functions.

For the energy demand process, we can get a stochastic
demand curve α(t) with bounding function εd, denoted by
D ∼ �εd,α�. For the solar power supply, we assume all
the PV panels are homogeneous. Based on the per unit data
profile, given the total area of PV panels, Np, we can find
a stochastic supply curve βp(t), with bounding function εps ,
denoted by Sp ∼ �εps ,βp�. Similarly, all the wind turbines are
also assumed to be homogeneous. Based on the per turbine
data profile, given the number of wind turbines, Nw, we can
find a stochastic supply curve βw(t) for the wind energy
supply with bounding function εws , denoted by Sw ∼ �εws ,βw�.
To aggregate heterogeneous power supply sources together, we
then introduce the energy aggregation property:

Theorem 2: (Aggregation Property) Consider a power sys-
tem that consists N generators in parallel. If each power
generator (n = 1, 2, ..., N) provides a stochastic energy supply
curve Sn ∼ �εn,βn�, then the power system provides a
stochastic supply curve S ∼ �ε,β � with β(t) = β1(t)+β2(t)+
...+ βN (t), ε(x) = ε1 ⊗ ε2 ⊗ ...⊗ εN (x).
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Fig. 2. Per unit solar generation profiles in Long Beach, CA
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Fig. 3. Cumulative per unit solar generation profiles
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Fig. 4. Per turbine wind generation profiles on an island near Santa Barbara
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Fig. 5. Cumulative per turbine wind generation profiles
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Fig. 6. Daily load profiles on Santa Catalina Island
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Fig. 7. Cumulative load profiles on Santa Catalina Island

Proof: Here we only illustrate the 2 generators case, from
which the proof can be easily extended to the N generators
one. As S(t) is the aggregation of 2 power supplies, we have
∀0 ≤ s ≤ t, S(s, t) = S1(s, t) + S2(s, t). For any function of
βn(t), n = 1, 2, we have

sup
0≤s≤t

[(β1(t− s) + β2(t− s))− S(s, t)]

≤ sup
0≤s≤t

[β1(t− s)− S1(s, t)] + sup
0≤s≤t

[β2(t− s)− S2(s, t)].

With the above assumptions, we have P{ sup
0≤s≤t

[β1(t− s)−

S1(s, t)]} ≤ ε1(x), and P{ sup
0≤s≤t

[β2(t − s) − S2(s, t)]} ≤

ε2(x), with Lemma 1, the theorem is proved.

C. Independent Analysis

In order to improve the bounding functions, we can further
exploit the independence between different processes. In the
rest of this paper, we use [x]1 to denote the minimum of the
given number x and 1, i.e., [x]1 ≡ min{x, 1}.

Lemma 2: For non-negative random variables X and Y ,
with their complementary cumulative distribution functions

(CCDF) F c(x) and Gc(x). If they are independent and
F c(x) ≤ εf (x) as well as Gc(x) ≤ εg(x), there holds

P{X+Y > x} = 1−P{X+Y ≤ x} ≤ 1−εcf ∗εcg(x), (14)

where the operator ∗ denotes the Stieltjes-Convolution, and
εcf (x) = 1− [εf (x)]1, and εcg(x) = 1− [εg(x)]1.

The proof of the lemma is based on the Stieltjes-
Convolution, which is given in [1], and it is omitted here due
to page limitations. It can be verified that the bound in Lemma
2 is much better than the one calculated by Lemma 1, and we
have the following corollary for a better bound:

Corollary 1: Under the same condition as Theorem 2, if the
energy supply process Sn, (n = 1, 2, ..., N) are stochastically
independent, then the power system provides a stochastic
supply curve S ∼ �ε,β � with β(t) = β1(t)+β2(t)+...+βN (t),
ε(x) = 1− εc1 ∗ εc2 ∗ ... ∗ εcN (x), where εcn(x) = 1− [εn(x)]n,
(n = 1, 2, ..., N).

If the energy demand and supply processes are indepen-
dent, we can also improve the bounding function derived in
Theorem 1 accordingly:

Corollary 2: With the same condition as Theorem 1, if
the energy demand process and energy supply process are
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Fig. 8. The fraction of time that energy not-served as a function of battery
storage capacity with Np = 2× 103 and different number of wind turbines

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Battery Storage Capacity (MWh)

Fr
ac

tio
n 

of
 T

im
e 

th
at

 E
ne

rg
y 

N
ot
−S

er
ve

d

 

 
Np=2× 103

Np=3× 103

Np=4× 103

Np=5× 103

Fig. 9. The fraction of time that energy not-served as a function of battery
storage capacity with Nw = 1 and different number of PV units

stochastically independent, there holds

P{LPS(C, t) > 0} ≤ 1−εcd∗εcs(C− sup
0≤s≤t

[α(s)−β(s)], (15)

where εcd(x) = 1− [εd(x)]1, and εcs(x) = 1− [1, εs(x)]1.

D. Numeric Results

With different configurations of power generation, the ag-
gregate energy supply from the solar and wind power can be
calculated based on Corollary 2. For a given battery capacity
C, the LPSP is provided by Corollary 1. Together with (9),
we can get the FTNS over the time period of the given data
profile, i.e., T = 744 in January.

Fig. 8 depicts the FTNS versus battery storage capacity
with a fixed level of solar generation, i.e., Np = 2 × 103,
for different number of wind turbines, Nw. As Nw increases,
the FTNS decreases with the same battery capacity and ap-
proaches a constant value. For a targeting FTNS value of 0.01,
we can get the battery capacity requirement with different
energy configuration, i.e., when the wind turbines increases
from 2 units to 5 with other setting fixed, the battery capacity
requirement reduces from 66.5 MWh to 51.3 MWh, 48.4
MWh and 46.6 MWh respectively.

Fig. 9 shows the FTNS versus battery capacity for different
levels of solar generation with a single wind turbine. We notice
that FTNS decreases as the battery capacity increases. Similar
to the trend with increasing Nw in Fig.8, as Np increases, the

transition from high FTNS to low FTNS sharpens with the
increasing of battery capacity. Given a targeting FTNS value,
further increasing the wind turbines would have less impact in
reducing the battery requirement due to the fluctuating nature
of the renewable power sources.

V. CONCLUSION

In this paper, we discuss how the concepts of stochastic
network calculus is applicable to the design of a power grid.
Motivated by the challenges associated with integration of
renewable energy resources in to the electric grid due to
power intermittency, we introduce a new approach to asses
the system reliability based on stochastic network calculus.
By adjusting the framework of stochastic network calculus,
we build a stochastic model to analyze the achievable level
of system reliability with appropriate number of PV cells,
wind turbines, and energy storage capacity. We also consider
a case study on Santa Catalina Island, and investigate the
feasibility of replacing diesel generation entirely with PV
panels and wind turbines, supplemented with energy storage.
An important issue of stochastic network calculus is to find
proper supply and demand models, and we would further
investigate alternative models to better suit the analysis.
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